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ISAbstract—The thesis focuses on the role of symmetries in computational
electromagnetics. The presence of point symmetries—geometric simi-
larities with respect to a fixed point—is studied within the realm of the
method of moments, revealing the simultaneous block-diagonalization
of matrix operators as the key instrument. The theory and an effective
procedure to acquire this so-called irreducible representation are de-
vised and implemented over a set of piece-wise basis functions. The
von Neumann-Wigner theorem and its interpretation of avoided cross-
ing are shown to be a remedy of problems associated with parametrized
modal analysis. This includes the identification of crossings/crossing
avoidances in modal tracking or an erroneous duality gap appearing in the
dual formulation of quadratic programs. The orthogonality between irre-
ducible representations is utilized to simultaneously excite independent
radiation states, a method that can find its use in multiple-input multiple-
output devices. Lastly, it is shown that the block-diagonal description of
symmetrical systems can lead to a remarkable increase in the speed of
computations.
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Supervisor: doc. Ing. Miloslav Čapek, Ph.D.
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Symmetry – from the Greek �mmetrÐa (symmetria), a compound
of �n- (syn) “together with; alike; at the same time”, mètron
(metron) “measure”, and the suffix -Ða: “agreement in dimensions,
due proportion, arrangement.” Meaning the “harmonic arrangement
of parts to each other or to the whole” [1, 2].

C6v point group.
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Abstrakt

Tato práce se zabývá uplatněńım geometrických symetríı v řešeńı elektromagne-
tických úloh. Bodové symetrie — tedy symetrie, které ponechávaj́ı alespoň jeden
bod prostoru nedotčený — jsou využity v rámci metody moment̊u aplikované
na integrálńı rovnice pro pole a uvažuj́ıćı po částech konstantńı bázové funkce.
Kĺıčovou roli zastává současná bloková diagonalizace několika operátor̊u, která
je založena na źıskáńı dále neredukovatelných (tzv. ireducibilńıch) reprezentaćı.
Von Neumann-Wigner̊uv teorém a jeho interpretace kř́ıžeńı pr̊uběh̊u vlastńıch č́ısel
jsou aplikovány jako prostředek k řešeńı problémů vyskytuj́ıćıch se v modálńı analýze
geometricky symetrických objekt̊u. Mezi ně patř́ı samotné rozhodováńı o protnut́ı
křivek vlastńıch č́ısel či eliminace chybně interpretovaného rozd́ılu mezi primárńım
a duálńım řešeńım v kvadratických optimalizačńıch problémech. Přirozená ortogo-
nalita mezi neredukovatelnými reprezentacemi je využita k současnému vybuzeńı
několika navzájem neovlivňuj́ıćıch se přenosových kanál̊u, což je technika uplatňovaná
ve v́ıcevstupových/v́ıcevýstupových rádiových komunikaćıch. Bloková diagonalizace
operátor̊u symetrických systémů je dále využita k redukci výpočetńıho času.

Kĺıčová slova: Návrh antén, poč́ıtačové simulace, symetrie, teorie bodových
grup, metoda moment̊u, modálńı analýza, degenerovaná vlastńı č́ısla, konvexńı
optimalizace.
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Abstract

The thesis focuses on the role of symmetries in computational electromagnetics. The
presence of point symmetries—geometric similarities with respect to a fixed point—is
studied within the realm of the method of moments, revealing the simultaneous
block-diagonalization of matrix operators as the key instrument. The theory and an
effective procedure to acquire this so-called irreducible representation are devised
and implemented over a set of piece-wise basis functions. The von Neumann-Wigner
theorem and its interpretation of avoided crossing are shown to be a remedy of
problems associated with parametrized modal analysis. This includes the identifica-
tion of crossings/crossing avoidances in modal tracking or an erroneous duality gap
appearing in the dual formulation of quadratic programs. The orthogonality between
irreducible representations is utilized to simultaneously excite independent radiation
states, a method that can find its use in multiple-input multiple-output devices.
Lastly, it is shown that the block-diagonal description of symmetrical systems can
lead to a remarkable increase in the speed of computations.

Key Words: Antenna design, computer simulation, symmetry, point group
theory, method of moments, modal analysis, degenerated eigenvalues, convex opti-
mization.

xi





Contents

1 Introduction 1
1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 3
2.1 Point Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Perspective Areas of Interest . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Thesis Solutions 19
3.1 Publication A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Publication B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Publication C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Publication D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Conclusion 25
4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A Modal Tracking Based on Group Theory 27
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Background Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Practical Evaluation of Required Matrices . . . . . . . . . . . . . . . 33
A.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.A Correction of Vertical Shifts in Symmetry-Based Tracking . . . . . . 46

B Excitation of Orthogonal Radiation States 47
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.2 Orthogonal States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.4 Excitation States Based on Point Group Theory . . . . . . . . . . . 54
B.5 Ports’ Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.A Matrix Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiii



B.B Excitation Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.C Symmetry-Adaptation of a Vector . . . . . . . . . . . . . . . . . . . 65
B.D Total Active Reflection Coefficient . . . . . . . . . . . . . . . . . . . 67

C Finding Optimal Total Active Reflection Coefficient and Realized
Gain for Multi-port Lossy Antennas 69
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.2 TARC: Full-Wave Algebraic Formulation . . . . . . . . . . . . . . . . 70
C.3 Expression of TARC in Port Quantities . . . . . . . . . . . . . . . . 72
C.4 Optimal Excitation for Minimum TARC . . . . . . . . . . . . . . . . 76
C.5 Synthesis of Optimal Feeding Placement . . . . . . . . . . . . . . . . 80
C.6 Optimal Characteristic and Tuning Impedances for Minimum TARC 83
C.7 Realized Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
C.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
C.A Fundamental Bound on Radiation Efficiency . . . . . . . . . . . . . . 92

D A Role of Symmetries in Evaluation of Fundamental Bounds 95
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
D.2 QCQP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
D.3 Illustrative Example: Problem of P1-Type . . . . . . . . . . . . . . . 99
D.4 Presence of Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 102
D.5 Various Aspects of the Symmetry Presence . . . . . . . . . . . . . . 102
D.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
D.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.A Character Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E Antenna Toolbox for MATLAB 123
E.1 Author’s Contribution to the AToM . . . . . . . . . . . . . . . . . . 124

F About the Author 125
F.1 Personal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
F.2 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
F.3 Work Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
F.4 International Internships . . . . . . . . . . . . . . . . . . . . . . . . . 126
F.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
F.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
F.7 Foundation Acknowledgment . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 129

Lists 145
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiv



1 Introduction

Symmetries are an integral part of our everyday lives. Not only from the atomic
perspective, since every molecule has its atoms in symmetrical arrangement [3], but
also from our standard view where symmetries are perceived as natural, beautiful,
and harmonic [4, 5]. Humans have adapted them since prehistoric times [6–9] as the
deepest harmony in our minds. Symmetries occur in ancient symbols and ornaments,
in manufactured products, in architecture, art, music, and many other branches.
The existence of symmetries is also observed in all fields of natural science: biology,
chemistry, and, of course, physics.

Modal analysis is a widely used numerical approach decomposing linear operators
representing a system. For computational purposes, a system is typically discretized
and the operator is represented by a matrix. Its decomposition provides an orthogonal
set of eigenvectors that diagonalize the input matrix into the diagonal matrix
containing eigenvalues. Eigenmodes, represented by eigenvalues and associated
eigenvectors, give profound insight into a system’s behavior. The method is often
used in vibroacoustics to determine natural frequencies, damping factors and mode
shapes of mechanical structures and components [10, 11]. Another branch where
modal analysis is widely used is quantum mechanics: eigenvectors of the time-
independent Schrödinger equation are stationary states of the quantum mechanical
system and corresponding eigenvalues represent energy [12–14]. In recent decades,
modal analysis became popular in antenna theory as well, especially in the form of
characteristic modes [15].

Computing the eigenmodes of non-trivial planar structures has been a challenge
for many mathematicians over the centuries and these efforts have intensified with
the advent of computer simulations1 [18, and references therein]. The impact of
symmetries on the presence of degenerated eigenvalues was described by von Neu-
mann and Wigner [19, English transcription: 20] and the presence of symmetries in
eigenmodes was further addressed in many works across the fields of science, such
as: in studding photonic crystals [21, 22]; in analyzing lasers [23] or electromagnetic
resonators [24]; in designing microstrip transmission lines [25]; in parallel waveguide
couplers [26]; or in waveguides using the decomposition of fields into odd and even
modes [27].

1One of the most familiar non-trivial planar shapes is the “L-shape” formed from three unit
squares. In the late 1970s, Cleve Moler [16] used this shape to illustrate the power of his new

computing software, nowadays known as MATLAB® [17]. The logo of MathWorks, Inc.—the

company which developed MATLAB®—shows the first eigenmode of the “L” [16, 18].
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CHAPTER 1. INTRODUCTION

Although the development of electromagnetic software used for antenna design
and analysis has made tremendous progress in recent years, it is not common to
utilize symmetries during a simulation save for magnetic or electric planes. This
thesis aims to demonstrate that symmetries are not only associated with mirror
planes and that they also offer many possibilities for improving the computational
performance of numerical methods, such as method of moments (MoM) [28].

In this thesis, the presence of symmetries is used to block-diagonalize a system
matrix resulting in the division of the original problem into separated subproblems
which can be evaluated one by one in significantly shorter computational time. In
addition to this general benefit, symmetries are used to solve specific problems
frequently addressed in the past. Based on invariance of modes to symmetry opera-
tions, a classification into irreducible representations (irreps) has been developed and
utilized for the deterministic and unequivocal solution of the modal tracking problem.
Knowledge of mode classification can also be beneficial in convex optimization where
an erroneous duality gap occurs due to the presence of symmetries. It is shown
that this erroneous duality gap can be eliminated, and, thus, the optimal value
can be reached by an appropriate linear combination of two degenerated modes.
The native orthogonality between irreps is utilized to simultaneously excite several
orthogonal radiation states for multiple-input multiple-output (MIMO) applications.
The maximal number of those states and the minimal number of feeders needed to
excite them is determined only from the knowledge of symmetry operations with
respect to which the structure is invariant.

The thesis proves that any additional knowledge of the antenna’s geometrical
properties may be used to increase the precision or to reduce the computational
time of a numerical evaluation. Thanks to the implementation in MoM code, these
features can be utilized within a broad antenna community. The thesis provides
a rigorous solution to the treatment of degenerated modes or the approach to
effectively design orthogonal MIMO channels.

1.1 Organization of the Thesis

The thesis consists of two main parts.
The first part, divided into four chapters, contains a brief theoretical explanation

of the problem. Chapter 2 offers an overview of the state of the art, and leads to a
summary of open problems in Section 2.4, which are taken as the goals of this thesis.
Chapter 3 briefly describes and refers to publications in a journal with impact factor
(IEEE Transactions on Antennas and Propagation) and/or in the proceedings of
prestigious international conferences (EuCAP, IEEE AP-S/URSI, PIERS), where
solutions to the thesis’ goals were published. The thesis is concluded in Chapter 4.

The second part, consisting of Appendices A–D, reprints the aforementioned
publications. Note that the bibliographies from all reprinted publications have been
merged into a sole bibliography list in the thesis. This leads to different reference
numbering in the thesis and journal publications.

Appendix E describes the Antenna Toolbox for MATLAB (AToM) [29], the
software package in which all results published in the thesis were computed, and the
development of which the author of the thesis participated. AppendixF contains
the author’s résumé and a list of all publications he collaborated on as a principal
author or co-author during his studies.

2



2 State of the Art

The theory of symmetries is an advanced branch of mathematics belonging to the
theory of groups, from which only point symmetry groups are considered in this
thesis. Section 2.1 contains a brief extract of the theory to introduce the necessary
technical background and nomenclature used in the thesis. For greater insight, the
reader can refer to textbooks on the subject, e.g., [30–32]. In Section 2.2, modal
analysis is introduced with an example of characteristic modes [15]. This section
is followed by Section 2.3 which describes antenna topics that can benefit from
the utilization of symmetries, particularly modal tracking, the selective excitation
of modes, optimization problems defined by quadratically constrained quadratic
programs (QCQPs), and the fundamental bounds of symmetrical structures. The
chapter closes with Section 2.4 enumerating the objectives of the thesis.

2.1 Point Group Theory

The utilization of symmetries is based on point group theory [30, 31], a field of
mathematics focusing on point symmetries expressed by these symmetry operations1:

identity: E,

inversion: I,

reflection by a plane: σ, typically supplemented by the subscripts “v” or “h”
to distinguish between reflection by vertical (containing the principal axis2) or
horizontal (perpendicular to the principal axis) planes,

n-fold rotation (proper rotation): Cn (Cp
n when is repeated p times),

n-fold rotoreflection (improper rotation): Sn = Cnσh.

The symmetry operation, represented by the symbol R, can be applied to object Ω

by operation RΩ, e.g., vector v′ = (x′, y′, z′)T in the three-dimensional cartesian
coordinate system is obtained by the application of symmetry operation R on original
vector v = (x, y, z)T as

v
R−→ v′ : v′ = Rv = C(R)v, (2.1)

1The Schoenflies notation [33] is used to denote symmetry operations and point groups.
2The standard convention considers the z-axis as the principal axis of the system and the

yz-plane as the principal plane [34].

3



CHAPTER 2. STATE OF THE ART

Ω EΩ σyz
v Ω σxz

v Ω C2Ω G

C1

Cs

Cs

C2v

x

y

z

Figure 2.1: Four symmetry operations applied to four different objects Ω:
identity E, reflection by yz-plane σyz

v , reflection by xz-plane σxz
v and rotation by

angle π around the z axis C2. Each object is invariant under a different set of
symmetry operations, i.e., they are classified into different point groups G.

where C(R) ∈ R3×3 is a coordinate transformation matrix representing operation R
in the basis of the corresponding vector space, see Figure 2.1 for examples of symmetry
operations and their application to different objects. Symmetry operations can be
concatenated using (2.1) multiple times, i.e.,

v
R1−−→ v′ R2−−→ v′′ : v′′ = R2 (R1v) = R2R1v = C(R2)C(R1)v. (2.2)

The closure of point group G [31] can be verified by constructing a multipli-
cation table where rows and columns are labeled by the group elements and the
body of the table contains the products of all the combinations of symmetry opera-
tions R1, R2 ∈ G. Each row and column of the multiplication table must contain
each element of the group once and only once [30], see the multiplication table of
point group C2v in Table 2.1.

A subset of symmetry operations in G, which can create its own closed mul-
tiplication table, is called the subgroup (a point group with lower order). For
example, group C2v has the following subgroups: group C2 (G = {E,C2}) and two
groups Cs (G = {E, σh}).

Depending on the list of symmetry operations under which the object Ω is
invariant, the object can be categorized into one of the point groups G [30]. Objects
from Figure 2.1 belong to point groups C1 (letter3 F), Cs (letters A and Y),
and C2v (letter H). Notice that non-symmetric structures can also be studied via
point group theory, they belong to the C1 point group and are solely invariant under
identity operation.

3The author is aware that, strictly speaking, these letters, as planar structures, should be
classified into point groups C1 (letter F), D1 (letters A and Y), and D2 (letter H), respectively,
because reflection operations and point groups Cnv are connected to volumetric objects. For
planar structures, rotation can be substituted by reflection, e.g., σyz = Cx

2 . However, at the
beginning of the work, reflection operations were used in parallel with reflection planes available
in commercial electromagnetic solvers. At least in the scope of the thesis, this substitution is
isomorphic and does not have any impact on the presented methods and results.
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2.1. POINT GROUP THEORY

Table 2.1: Multiplication table for point group C2v consisting of four sym-
metry operations: identity, rotation by angle π and two reflections, i.e.,
G =

{
E,C2, σxz

v , σyz
v

}
. A rectangle is a representative example belonging to

this group.

E C2 σxz
v σyz

v

E E C2 σxz
v σyz

v

C2 C2 E σyz
v σxz

v

σxz
v σxz

v σyz
v E C2

σyz
v σyz

v σxz
v C2 E

σv1σv2

σv3

C3

C2
3

E

1 2

3

4

56

O

R 1 2 3 4 5 6

E 1 2 3 4 5 6

σv1 1 3 2 6 5 4
σv2 3 2 1 5 4 6
σv3 2 1 3 4 6 5

C3 2 3 1 5 5 4

C2
3 3 2 1 6 4 5

Figure 2.2: Six nodes arranged into an equilateral triangle. The structure belongs
to point group C3v and consists of six symmetry operations. The table shows how
each node is transformed via a corresponding symmetry operation.

2.1.1 Matrix Representations

Within a complex N -dimensional vector space V , object Ω is described by vector V,
and symmetry operation R ∈ G is described by a non-singular matrix C (R) .
As an example, Figure 2.2 shows six nodes arranged on an equilateral triangle,
a structure belonging to point group C3v. Transformations of all points via all
symmetry operations R ∈ G are shown in the right panel of the figure. Examples
of the corresponding mapping matrices4 C (R) , which describe how each node is
transformed by symmetry operation R, are

C (C3) =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 , C (σv1) =


1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 . (2.3)

4The matrices are constructed in the selected vector space. Here, each row/column represents
one node of the structure, which leads to the matrices of dimension six. There are, however,
other options. For example, representing each node in cartesian coordinates x, y, z would require
matrices C (R) of dimension 18.
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CHAPTER 2. STATE OF THE ART

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







−0.50 −0.87 0 0 0 0

0.87 −0.50 0 0 0 0

0 0 1 0 0 0

0 0 0 −0.50 0.87 0

0 0 0 −0.87 −0.50 0

0 0 0 0 0 1







−0.50 0.87 0 0 0 0
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0 0 0 −0.50 −0.87 0

0 0 0 0.87 −0.50 0
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0.73 −0.68 0 0 0 0

−0.68 −0.73 0 0 0 0

0 0 1 0 0 0

0 0 0 −0.51 −0.86 0

0 0 0 0.86 0.51 0

0 0 0 0 0 1







−0.96 −0.29 0 0 0 0

−0.29 0.96 0 0 0 0

0 0 1 0 0 0

0 0 0 1 −0.01 0

0 0 0 −0.01 −1 0

0 0 0 0 0 1







0.23 0.97 0 0 0 0

0.97 −0.23 0 0 0 0

0 0 1 0 0 0

0 0 0 −0.49 0.87 0

0 0 0 0.87 −0.49 0

0 0 0 0 0 1







D (E) =

D (C3) =

D
(
C2

3

)
=

D (σ1) =

D (σ2) =

D (σ3) =

Figure 2.3: An example of matrix representation D (R ∈ G) of an equilateral
triangle from Figure 2.2. Two presented irreps are highlighted by the colored
rectangles. Decimal numbers were rounded to two digits.

The set of mapping matrices {C (R ∈ G)} forms a representation5. An infinite
number of representations with the use of similarity transformation exist, however,
it is convenient to use those in block-diagonalized form. Such a transformation can
be done as

D (R) = V−1C (R)V =


D1(R) 0 · · · 0

0 D2(R) · · · 0
...

...
. . .

...
0 0 · · · DQ(R)

 . (2.4)

It is not trivial to find the transformation matrix V which simultaneously block-
diagonalizes all matrices C (R ∈ G); see also Section 2.1.4. One possibility is to
use eigenvectors of an arbitrary matrix operator of a corresponding structure be-
longing to point group G, arranged into matrix V = v1 ⊕ v2 ⊕ · · · ⊕ vN . As an
example, the matrix of Euclidean distances between all points of the equilateral
triangle in Figure 2.2 was constructed, its eigenvectors were computed and arranged
into matrix V to express a block-diagonalized matrix representation (2.4). These
matrices D (R ∈ G) are shown in Figure 2.3.

2.1.2 Reducible and Irreducible Representations

A representation of vector space V is said to be reducible if there exists a proper linear
subspace V1 of V with the property that every transformation via this representation
maps every vector of V1 back onto V1 only [31]. A non-reducible representation
is called an irreducible [31] representation (or shortly irrep). The reducibility can

5“A representation is a set of matrices, each of which corresponds to a symmetry operation
and combines in the same way that the symmetry operators in the group combine” [3].
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Table 2.2: Character table for point group C3v, [30].

C3v E 2C3 3σv

A1 +1 +1 +1
A2 +1 +1 −1
E +2 −1 0

be easily observed from the block-diagonal form of representation (2.4). Each
block Dq(R) (all matrices in the representation must be block-diagonalized in the
same way) is a matrix representation of the irrep; see highlighted matrices of all
presented irreps in Figure 2.3. Each irrep follows the same multiplication table as
the original reducible representation.

It is observable from Figure 2.3 that blue blocks of size 2×2 cannot be diagonalized
further and, thus, they belong to a two-dimensional irrep. The consequences of higher-
dimensional irreps and modal analysis is described in detail later in Section 2.2.1.

Every point group has a limited number of irreps which may occur in D (R)
multiple times. Irreps α are labeled by Mulliken’s symbols [34] according to the
dimensionality of their matrix representation gα = dim [Dα(R)]: A and B for one-
dimensional, E for two-dimensional, and T for three-dimensional irreps, respectively.
If more irreps of the same label are present, additional subscripts and/or superscripts
are used.

In the example displayed in Figure 2.3, a one-dimensional irrep occurs twice and
a two-dimensional irrep also occurs twice. Further classification to distinguish if the
same-dimensional irreps are the same, or if there are several irreps which exist with
the same dimensionality, can be performed with the knowledge of its characters.

2.1.3 Characters and Character Tables

As written previously, the use of similarity transformation offers an unlimited
number of matrix representations Dα (R) of irrep α, however, all these transforma-
tions do not affect the parameter of the matrix—its trace—which is called group
character χα (R) = trace [Dα (R)].

Characters χ can be stored as entries of the character table where each row
represents one irrep α and columns iterate over symmetry operations R ∈ G.
Table 2.2 shows the character table for point group C3v. Note that columns
containing the same entities are arranged into so-called conjugacy classes. There
are as many irreps in each point group as there are classes in it.

For the example in Figure 2.3, it can be concluded that the fourth and sixth
eigenvectors belong to irrep A1, and the remaining eigenvectors belong to irrep E,
while irrep A2 is not represented at all in this example.

2.1.4 Block-Diagonalization of the Matrix Operator

To characterize matrix operators of the system at hand, it is useful to find a similarity
transformation which converts them all into diagonal form simultaneously. In general,
such a basis can be found for up to two matrix operators using modal decomposition
(see later in Section 2.2), but only in special cases it is possible to diagonalize three
or more operators simultaneously. For symmetrical structures, the orthogonality

7
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between irreps can be utilized to find a basis which, at least, block-diagonalize [35]
all matrix operators invariant under the symmetry operations of the point group G.

To perform the block-diagonalization, a symmetry-adapted basis [31]

ρ(α,i) =
gα

g

∑
R∈G

d̃αii (R)C (R) (2.5)

is used to create a projection operator ρ(α,i) which projects an original basis vector

for any irreducible representation. In (2.5), D̃ =
(
D−1

)T
stands for a contra-gradient

representation, dii is an element of matrix D at position ii and (α, i) [30] is typically
denoted as a species.

The application of this projection operator onto arbitrary vector v,

v(α,i) = ρ(α,i)v, (2.6)

for a different species (α, i) provides, due to the great orthogonality theorem [30],

orthogonal vectors v(α,i).
Collecting linearly-independent columns of ρ(α,i) into matrix Γ(α,i) ∈ CN×ηα

and concatenating these matrices into matrix Γ ∈ CN×N provides a similarity
transformation matrix, such that

Â = ΓTAΓ (2.7)

is block-diagonal. Note that matrix Γ is related only to the geometry of the structure
and is independent of matrix operator A. Thus, the block-diagonalization can be
performed for an arbitrary operator computed on the structure.

2.2 Modal Analysis

The modal analysis is a widely used concept in numerical analysis that decomposes
a linear operator into a set of eigenvectors and eigenvalues [36]. Considering a
matrix, the discretized form of such an operator in a selected basis [37], which can
be achieved, for example, by MoM [28] or finite element method (FEM) [38], the
decomposition is provided by solving a generalized eigenvalue problem (GEP) [39],
i.e.,

A(p)In(p) = λn(p)B(p)In(p), (2.8)

whereA andB are the mentioned decomposed matrices and In is the n-th eigenvector
with the corresponding eigenvalue λn. The eigenvalue problems can be solved using a
generalized Schur decomposition [40] or an implicitly restarted Arnoldi method [41].

Parameter p in (2.8) reminds us that input matrices A, B are typically dependent
on some parameter, such as energy, frequency, etc. Then, the parameter-dependency
of eigenvalues λn(p) is often studied, see Sections 2.2.2 and 2.3.1 for a detailed
description.

2.2.1 Degenerated Modes

When there are several modes with equal eigenvalue λn(p), they are called “multi-
pliced” or “degenerated”. There exist two types of degeneracies: “geometrical” and
“algebraic” [42], both of which are caused by the presence of symmetries.

8
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m = −4 m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3 m = 4

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

x y

z

Figure 2.4: Real spherical harmonics Sm
ℓ up to degree ℓ = 4 [44, 45]. The

red colors represent positive values while the blue colors are for negative values.
Each row shows geometrically degenerated modes within one irrep which has a
dimensionality of gα = 2ℓ+ 1.

The geometrical degeneracy, also called systematic or essential, is related to the
occurrence of higher-order irreps. Modes belonging to such irreps are degenerated
over the entire range of parameter p. A typical example of a geometrical degeneracy is
spherical harmonics (modes of the spherical shell), which occurs in 2ℓ+1 degeneracies
for the degree ℓ [43], see Figure 2.4.

The latter degeneracy—algebraic, also called accidental—occurs coincidentally.
It just so happens that, for a specific value of parameter p, more modes with the
same eigenvalue exist, however for the value p+∆p eigenvalues differ.

The degeneracies were studied by von Neumann and Wigner in 1929 which led
to a theorem [19], from which it follows that accidental degeneracies can occur only
between modes from different irreps. This theorem, and the distinction between
geometrical and accidental degeneracies, plays a crucial role in the solution to
modal tracking, see Sections 2.3.1 and 3.1. Having degenerated modes might act as
beneficial applications when one of those modes is to be selected and further utilized.
Sections 2.3.3 and 3.4 are dedicated to this topic.

2.2.2 Characteristic Modes

As a very current example of modal analysis, characteristic modes (CMs) can be intro-
duced as they have become popular within the antenna design community in recent
decades. CMs were originally introduced for scattering matrices by Garbacz [46, 47],
and the theory was subsequently extended and generalized for conducting bodies
by Harrington and Mautz [48, 49]. CMs are acquired by the decomposition (2.8) of
impedance matrix Z = R0 + jX0 [50], specifically

X0In = λnR0In. (2.9)
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Figure 2.5: Dependency of analytically computed characteristic numbers (top
panel) and characteristic angles (bottom panel) on electrical size ka of a spherical
shell with radius a = 1m. The first three transverse magnetic (TM) and transverse
electric (TE) modes are depicted [52]. Note that each mode is geometrically
degenerated (more modes have the same eigenvalue); thus, several overlapped lines
exist for each mode [52].

Here, eigenvector In, also called a characteristic vector, stands for expansion coeffi-
cients, which, in a combination of used basis functions ψ (r), typically Rao-Wilton-
Glisson (RWG) basis functions [51], can express n-th modal current density

Jn (r) ≈
N∑

m=1

Inmψm (r) . (2.10)

Eigenvalues λn are called characteristic numbers and can be rewritten as a Rayleigh
quotient [36]

λn =
2ω (Wm,n −We,n)

Prad,n
≈ IHnX0In

IHnR0In
(2.11)

with Wm,n, We,n, and Prad,n representing stored magnetic energy, stored electric
energy, and radiated power of the n-th mode, respectively; superscript H stands
for the complex conjugate. Depending on the sign of the characteristic number,
characteristic mode can be classified as

Wm,n > We,n ⇐⇒ λn > 0: mode is of inductive nature,

Wm,n < We,n ⇐⇒ λn < 0: mode is of capacitive nature,

Wm,n =We,n ⇐⇒ λn = 0: mode is in resonance.

To find the resonance of each CM, it is frequently useful to study modal behavior
depending on the frequency as parameter p in (2.8), see Figure 2.5 which shows
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analytically computed eigenvalues6 of a spherical shell [52, 53] made of a perfect
electric conductor (PEC). Characteristic angles [54], shown in the bottom panel of
Figure 2.5,

δn = 180◦ − arctan (λn) . (2.12)

are used to rescale characteristic numbers from λn ∈ (−∞,∞) to δn ∈ (90◦, 270◦).
Notice, that the eigenvalue decomposition of the impedance matrix provides

an elegant overview of fundamental antenna behavior only from the knowledge of
antenna geometry and the operating frequency without the necessity of setting any
excitation. The total current resulting from the excitation represented by excitation
vector Vinc can be computed as a superposition of modal currents [50]

J (r) =

∞∑
n=1

αnJn (r) (2.13)

with a complex coefficient [55]

αn =
1

Prad

IHnV
inc

1 + jλn
. (2.14)

Figure 2.6 shows an example of modal currents on a bowtie antenna.
The consequences of symmetries and CMs were observed by Knorr in 1973 [56]

where properly selected expansion functions, with respect to symmetries, were
used and substituted into GEP (2.8). It has been shown that for the case of
symmetrical structure, the presence of symmetries is also reflected in its eigenvectors.
It was demonstrated on the body of revolution (belonging to group C∞v) that its
characteristic modes can be classified into irreducible representations. Moreover, an
approach of block-diagonalization of the impedance matrix was introduced. This
operation provided the possibility of solving each block separately which significantly
reduced computational time. The block-diagonalization was further developed by
Tripp and Hohmann [35], who used a symmetry-adapted basis, see Section 2.1.4, for
structures belonging to arbitrary point groups. Although these observations were
demonstrated on CMs, they can be generalized and applied for arbitrary modal
decomposition.

2.2.3 Other Decompositions

Characteristic modes are not the only modal decompositions used in electromag-
netism. Eigenmodes of other matrix operators are also studied, e.g.:

stored energy modes (A ≡ Xe or A ≡ Xm, B ≡ E) [57],

“Loop-Star” type decomposition (A ≡ Xm, B ≡ Xe) [58],

radiation efficiency modes (A ≡ Rρ, B ≡ R0) [59],

natural modes (A ≡ Z, B ≡ E) [60],

modes of gain to the Q-factor ratio (A ≡ X0, B ≡ ωW) [61],

directivity modes (A ≡ 4πU, B ≡ 1/2(R0 +Rρ)) [62],

with the meaning of all matrices explained in the above mentioned references.
Modal analysis was not only studied as a full-domain problem, port-modes were

published as well [55, 63].

6Note that obtaining such smooth curves for discretized objects, which cannot be solved
analytically, is challenging and the process is described in further detail in Section 2.3.1.
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(a) Mode #1, λ1 = −1.717. (b) Mode #2, λ2 = −41.17.

(c) Mode #3, λ3 = 150.3. (d) Mode #4, λ4 = −356.5.

(e) Mode #5, λ5 = −545.7. (f) Mode #6, λ6 = 2085.

Figure 2.6: Current densities of the six most significant characteristic modes
(with the lowest magnitude of characteristic number) of a bowtie antenna. The
structure has electrical size ka = 1 and aspect ratio 2 : 1. The narrowest dimension
of the bowtie is

√
5a/50.

2.3 Perspective Areas of Interest

This section introduces fields of computational electromagnetics where the utilization
of symmetries has not been sufficiently studied yet, and it has high potential to
improve or solve current problems.

2.3.1 Modal Tracking

Modal tracking is a post-processing algorithm used in cases when a modal analysis
is computed for a set of matrix operators dependent on parameter p, and modes
dependent on such a parameter are required as a result. CMs computed for frequency
range f , which is discretized into Nf frequency samples, can serve as a representative
example, and for each frequency sample, the eigenvalue problem is computed
separately. Figure 2.7a shows the ten most significant modes at each frequency
sample for a structure of four dipoles.

An expected result is to obtain traces of characteristic numbers, also known as
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(c) Correlation-based tracking.
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(d) Symmetry-based tracking.

Figure 2.7: Characteristic angles of four-dipoles array (W = L/25, d = L/2).
(a) Raw data, (b) untracked data, connected without any postprocessing algorithm.
(c) tracked data by the correlation-based algorithm [29], (d) symmetry-based
tracking—a solution described in this thesis; see more in Section 3.1.

“modal traces” or “eigentraces” and λn(p) as smooth functions over parameter p.
Since the numerical methods solving the eigenvalue problem (2.8), e.g., functions

eig or eigs in MATLAB® [17], typically provide modes sorted by the magnitude
of their eigenvalues, a simple connection of the n-th eigenvalue at each frequency
sample does not provide the expected result, as shown in Figure 2.7b.

Correlation-based algorithms [64–70] were developed to track modes over fre-
quency, especially for CMs solvers. These algorithms benefit from the fact that
the modal current distribution changes slowly with frequency. For each eigenvector
at frequency fi, correlation coefficients with all eigenvectors at frequency fi+1 are
computed, and, if the correlation is higher than a predefined threshold, the corre-
sponding two eigenvectors are paired. If, however, the modal current distribution
changes significantly between two frequency steps, tracking does not perform appro-
priately, see Figure 2.7c. Although there exist many enhancements of this algorithm
(far-field patterns correlation [67], surface current correlation [68], adaptive solver

13



CHAPTER 2. STATE OF THE ART

which compute additional frequency samples when the correlation is low [66, 68],
estimating of eigenvalues to avoid mistakes in tracking [69], additional tracking error
correction algorithm [70]), modal tracking is still not perfect.

The reaction of eigenvalues to a change of parameter(s) was studied by von Neu-
mann and Wigner [20]. In the interest of quantum-mechanical problems, they
investigated whether two modes could be degenerated between known values at
two samples of the parameters. This study resulted in the von Neumann-Wigner
theorem stating that “Usually two levels (modal traces) cross each other only if the
corresponding eigenfunctions have different symmetries.” [71].

This theorem was adapted for tracking characteristic modes by Schab and Bern-
hard [72]: “Characteristic mode eigenvalue crossings are only possible between
modes belonging to unique irreducible representations.”, and it can easily be applied
to non-symmetrical structures as well: “Objects that have no inherent geometric
symmetry (i.e., a symmetry group of C1) will have entirely non-crossing characteris-
tic mode eigenvalues. [. . . ] This result relaxes the need for precise modal tracking
routines since non-crossing eigenvalue sets are trivial to sort.”

These conclusions open possible challenges addressed in this thesis: Can modal
tracking be simplified for symmetrical structures? If the crossing is allowed only
between unique irreps, how can modes be classified into them? Does it mean that
correlation methods are superfluous?

2.3.2 Excitation of Characteristic Modes

The concept of CMs sparked the pursuit of exciting solely a selected mode. These
efforts have occurred since the introduction of CMs [54] to the present [73–87].
However, unless N ports cannot be used to excite every unknown (basis function)
separately, other modes will always be a part of the total current (2.13) with, more
or less, the excitation coefficient αn. Figure 2.8 shows the excitation coefficients of
a bowtie antenna fed by a delta-gap source in its center. It can be observed that,
in this example, for small electrical size ka, the excitation of only the first mode
was successful; however, for ka > 4, the total current is going to be composed of the
superposition of modes 1 and 9 with similar weights.

With the vast expansion of MIMO systems, the idea to use CMs in antenna
design arose. The orthogonality between CMs is intended to be utilized for creating
several orthogonal radiated states. There exist several studies utilizing this idea. To
mention a few:

several publications are focused on the excitation of orthogonal radiated
patterns on a rectangular plate or mobile chassis [73–75, 77, 79, 82, 83];

the excitation of degenerated modes on a metallic equilateral triangular-shaped
antenna [76] or on a circular ring antenna [84];

3 × 3 antenna array with four modal current distributions excited at each
element resulting in a 36-port antenna system [78];

the excitation of modes on a block platform by mounting an inductive coupling
exciter [81] or inverted-F antennas [87];

a 3-port bug-like structure [85].

In some of the above-cited publications, the utilization of symmetries was indicated
or studied, at least in distinguishing odd and even modes [80, 84, 85], distinguishing
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Figure 2.8: Top: Tracked characteristic modes by the correlation algorithm [29]
of a bowtie antenna. Bottom: Excitation coefficients αn for the case of exciting
the antenna by a delta gap placed in the narrowest part of the antenna.

odd and even reflections along axes on a rectangular plate [79, 83], or exciting modes
from four different irreps [73].

The most thorough utilization of symmetries and point group theory for the exci-
tation of several orthogonal states was published by Peitzmeier and Manteuffel [86]
who classified modes into irreps by visually inspecting symmetries present on modal
current distributions. In the end, they excited six orthogonal radiated patterns on
a square plate with twelve excitation slots (delta gaps). The work concludes with
the statement: “the number of feasible uncorrelated antenna ports can be predicted
from the number and dimensions of the irreducible representations. In other words,
there is an upper bound for the number of perfectly uncorrelated antenna ports of
given antenna geometry.”

The topic of modal excitation, despite the fact that a lot of work has already
been published, hides many challenges which are waiting to be investigated and
answered: Can CMs be classified into irreps “automatically” without the necessity
of their visual inspection? Can a feasible number of orthogonal radiated patterns be
predicted and what is the minimal number of feeders to excite all of them? What
are the appropriate positions of these feeders?

2.3.3 Fundamental Bounds

Fundamental bounds [88–90] addresses the question raised when a device is designed:
What is the best achievable performance? They are used to compare an existing
design with its physical limits and to decide whether it is worth improving the design
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further, or if it is already performing in an acceptable manner. In electromagnetism,
one of the first investigations on fundamental bounds was related to the maximum
directivity of a given antenna concluding that: “with the super-gain theorem, it
is possible to design an aerial of arbitrarily small dimensions with a directivity as
high as desired” [91]. The topic was further studied by Chu [92], who set a lower
bound on the Q-factor for electrically small antennas. By expanding the field into
spherical waves, he had shown that the Q-factor is inversely proportional to the
third power of electric size of the smallest sphere enclosing the antenna. Among
others [93–98], this work was followed by Harrington [99], who expressed Q-factor
as the ratio of quadratic forms in MoM matrices. The topic of fundamental limits
has become increasingly popular in recent years and has also entered the realm of
optics and plasmonics [100–105].

Since many antenna quantities can be expressed as ratios of quadratic forms in
the vector of current expansion coefficients, there exists a large number of works
focused on finding the fundamental bounds of such parameters using QCQP [106]:

minimizing the Q-factor [89, 107],

maximizing antenna gain [62],

maximizing radiation efficiency [99, 108], or

minimizing the total active reflection coefficient (TARC) [109],

to name a few.
The solution is typically approached using Lagrange duality [106]. Modal analysis

is frequently used within the process as a model order reduction technique or, since
the corresponding dual problem has itself the form of a GEP, parameterized by
Lagrange multipliers. In this latter case, the supremum of the dual function is a
lower bound to the primal optimization problem [106] and is given by the minimum
eigenvalue of the underlying eigenvalue problem.

Unfortunately, recent studies have revealed that degeneracies caused by the
presence of point symmetries induce an erroneous duality gap [106], i.e., the difference
between the solution to the primal and dual problems. The empirical solutions showed
that the combination of degenerated modes can suppress the duality gap [62, 107].
This approach is easy to apply to accidental degeneracies between two modes, but
geometrically degenerated modes may introduce more options to combine.

For illustrative purposes, Figure 2.9 compares the lower bounds on the radiation
Q-factor [61, 89] of various structures. The bound is compared to several realized
self-resonant antennas. Note that the studied regions (a sphere, a torus, a cylinder)
with continuous symmetries had to be discretized to evaluate the fundamental limits
numerically. There exist two ways of how to prepare the discretization:

to use non-symmetric mesh, i.e., to treat the object as non-symmetric, in
which case there cannot be degenerated modes causing an erroneous duality
gap, or

to use symmetric mesh keeping at least some symmetries of the original object,
in which case a special treatment is needed to compute bounds correctly.

The latter is preferred for the remarkable speed-up in evaluating fundamental bounds.
The impact of point symmetries on fundamental bounds is studied in this thesis in

detail. Namely, the following questions are answered: Can the block-diagonalization
of a matrix describing a point-symmetrical structure accelerate the computational
time of optimization? Can the classification of modes into irreps be beneficial in the
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Figure 2.9: Comparison of lower bounds on radiation Q-factor [61, 89] with
realized antennas. Solid lines represent bounds on various regions: a spherical
shell (black), a torus (orange), a cylindrical tube (green), and a rectangular plate
(blue). Markers represent the Q-factor of self-resonant antennas designed within
the respective regions.

evaluation of fundamental bounds? Is it possible to determine which degenerated
modes should be combined to eliminate the erroneous duality gap induced by
symmetries? What is the role of the von Neumann-Wigner theorem in resolving
these issues?

2.4 Thesis Objectives

The application of symmetries within electromagnetic theory offers many benefits
as well as challenges. Several questions raised in the previous section have yet to
be fully answered and are addressed in this thesis. The main aims are defined as
follows:

1. Utilize point group theory within the MoM framework and the theory of
characteristic modes.

2. Provide a deterministic solution to modal tracking.

3. Adopt symmetries to design excitation schemes on antennas to realize uncor-
related radiation states.

4. Study erroneous dual gaps occurring in QCQP problems defining the funda-
mental bounds on quadratic metrics on symmetrical structures.
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3 Thesis Solutions

The core of the thesis is based on four publications in IEEE Transactions on Antennas
and Propagation covering the thesis objectives defined in Section 2.4. Results from
the thesis were also presented at six prestigious international conferences. The list
of conference papers is enumerated in SectionF.5.2.

3.1 Publication A

M. Masek, M. Capek, L. Jelinek, and K. Schab, “Modal Tracking Based on
Group Theory,” IEEE Transactions on Antennas and Propagation, vol. 68,
no. 2, pp. 927-937, Feb. 2020, DOI: 10.1109/TAP.2019.2943354.

The basics of manipulation with symmetries within the MoM paradigm are
described in this paper for surfaces represented by triangular mesh, see Figure 3.1
which displays different meshes of a square plate, each of which are invariant under
a different set of symmetry operations and belonging to a different point group. The
paper proposes how to test invariance of objects under given symmetry operation R,
how to construct mapping matrices C (R) and matrix representation D (R). Further,
the classification of eigenmodes into irreps is presented, allowing us to use the
von Neumann-Wigner theorem [20] which states that eigentraces can only cross
(i.e., accidental degeneracy occurs) if modes belong to different irreps. Eigentraces
of modes belonging to the same irrep cannot cross each other. This provides a
deterministic solution to modal tracking.

The construction of a symmetry-adapted basis is explained, and the benefits of
block-diagonalizing a matrix operator are discussed. This block-diagonalization is
then used to compute only eigenmodes from the selected irrep (species).

The paper is reprinted in AppendixA.
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(a) C4v (b) C4 (c) Cs

(d) C2v (e) C2 (f) C1

Figure 3.1: Six different meshes of a square plate. (a) Fully symmetrical mesh
belonging into point group C4v. (b)–(f) Not all symmetries are fulfilled, thus
meshes belong only to different subgroups. Triangles highlighted by different colors
point out areas of changed mesh with a significant impact on the presence/absence
of some symmetry operations and, thus, the point group.

3.2 Publication B

M. Masek, L. Jelinek, and M. Capek, “Excitation of Orthogonal Radiation
Channels,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 9,
pp. 5365-5376, Mar. 2021, DOI: 10.1109/TAP.2021.3061161.

This paper is dedicated to the question of the simultaneous excitation of several
orthogonal radiation states used, for example, in MIMO applications. This is
achieved by employing the orthogonality between irreps when symmetries are present.

The maximal number of realized orthogonal states is determined based on the
point group to which the antenna structure belongs. The minimal number of ports
required to excite all of the states is also evaluated. The (im)practicality of port
placement at the reflection planes is discussed.

The procedure is illustrated, in detail, on an example showing the result of a
search for the best position of ports to obtain the best average TARC over all excited
orthogonal states. Thanks to the presence of symmetries, the task is reduced to find
the position of the “initial” port in the region of the generator of the structure1

and symmetry-adapted vectors (2.6) are used to acquire the solution on the entire
structure. Examples of resulting far-field diagrams, each representing the desired
orthogonal state, are shown in Figure 3.2.

The paper is reprinted in AppendixB.

1The generator of the structure is its minimal part which, after the application of all symmetry
operations, generates the entire structure.
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Figure 3.2: Four symmetrically placed ports were excited so as to excite currents
belonging to different irreps and providing four orthogonal radiation channels on a
rectangular rim.

3.3 Publication C

M. Capek, L. Jelinek, and M. Masek, “Finding Optimal Total Active Re-
flection Coefficient and Realized Gain for Multiport Lossy Antennas,” IEEE
Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2481-2493, May
2021, DOI: 10.1109/TAP.2020.3030941.

The paper provides a study of antenna TARC and realized gain, and shows
how these factors can possibly be improved. At the beginning, these antenna
parameters are described using MoM-based quantities and are subsequently reduced
to port-based expressions. Since the number of the connected ports is typically
low, this formulation significantly reduces the computational time of the following
optimization that follows.

TARC is evaluated for two cases: a single-port and a multi-port antenna. The
latter structure is taken as an example on which the TARC parameter is tuned by
finding the optimal excitation coefficient, the optimal port’s characteristic impedance,
the best port positions, tuning admittances, and optimal matching. Some of these
optimizations are described as QCQP problems to be solved by an eigenvalue
problem, while others lead to combinatorial optimization problems solved by an
exhaustive search. The optimization of realized gain is another example studied in
the paper.
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P1

P2

P3

P4

Figure 3.3: Four ports are considered at positions highlighted by black labels, and
their voltage optimized to provide the best TARC. Notice that the symmetrical
placement of ports, together with the symmetrical mesh of the structure, results in
the same voltage for each port. The structure belongs to point group C2v which
has only one-dimensional irreps with characters χα (R) = ±1.

It can be noticed that the structure used in all examples has symmetrical mesh
on the rim, but the ground plane is not symmetrical, see, for example, Figure C.4.
Considering a perfectly symmetrical structure, point group theory dictates, in this
case, unitary voltages with a corresponding orientation defined by the dominating
irrep, see Figure 3.3. Despite the slightly asymmetrical ground plane, voltages in
Figures C.13c and C.13d are, however, close to be symmetrical. Having symmetrical
mesh would allow for applying the theory described in this thesis to accelerate
the computations or to reduce the searched area for port’s placement only to the
generator of the structure.

The paper is reprinted in AppendixC.

3.4 Publication D

M. Capek, L. Jelinek, and M. Masek, “A Role of Symmetries in Evaluation
of Fundamental Bounds,” IEEE Transactions on Antennas and Propagation,
vol. 69, no. 11, pp. 7729-7742, Nov. 2021, DOI: 10.1109/TAP.2021.3070103.

This paper studies two general classes of QCQPs: those containing only quadratic
terms and those which include linear terms. The paper shows, on an example of
Q-factor minimization, that purely quadratic programmes for symmetrical structures
suffer from an erroneous duality gap which presents itself as an accidental degeneracy
in Lagrange’s multipliers. Further study shows that a linear combination of the
degenerated eigenmodes can eliminate this erroneous duality gap. The case where
an accidental degeneracy occurs between geometrically degenerated modes is also
introduced since it provides an additional degree of freedom to choose which two
modes can be combined to eliminate the erroneous duality gap, see an illustrative
example in Figure 3.4.

Other presented examples show the impact of the symmetrical imperfections of
mesh on the presence of degeneracies, or change of basis to port-modes representation
which reduces the size of the problem while the procedure remains valid. The paper
concludes with a robust algorithm eliminating the erroneous duality gap.

The paper is reprinted in AppendixD.
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Qlb = Q (TM1m + αTE1n)

Figure 3.4: Example of linear combinations of TM and TE characteristic modes
that can, in this specific case, eliminate the erroneous duality gap and reach the
fundamental bound on the radiation Q-factor. Degeneracies provide an additional
degree of freedom to which modes to use.
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4 Conclusion

The thesis studied the utilization of point symmetries in computational electromag-
netics. The mathematical formulation was based on a method of moments (MoM)
framework utilizing piece-wise basis functions. Point group theory was employed,
and irreducible representations of the structure were used to create a so-called
symmetry-adapted basis. It was shown that this basis block-diagonalizes MoM
matrix operators where each block corresponds to one irreducible representation. In
such a case, both the modal decompositions and the solution to the equation system
can be made block-wise resulting in a significant reduction of computation time.

The classification of eigenmodes into irreducible representations, together with
the von Neumann-Wigner theorem, was used to provide a deterministic solution
to modal tracking. It had been shown and verified that the accidental crossing
could only appear between modes from different irreducible representations. Mixing
modes from different irreducible representations was also utilized to eliminate the
erroneous duality gap, which occurs in quadratically constrained quadratic program
problems when geometrical degeneracies are present.

Bearing in mind a potential application in multiple-input multiple-output systems,
the orthogonality between irreducible representations was utilized to simultaneously
excite several orthogonal radiation states. The maximal number of excitable orthogo-
nal states and the minimal number of feeders needed to excite them was determined
solely from the knowledge of symmetry operations under which the structure is
invariant.

4.1 Future Work

Besides the topics solved in this thesis, several other symmetry-related issues may
be challenged in future:

It would be interesting to generalize the presented theory by including other
types of symmetries: translational and glide symmetries, which could be
utilized for the analysis and synthesis of antenna arrays, waveguide filters, and
other periodic structures.

It is of interest to utilize symmetries in other numerical methods, e.g., in
multilevel fast multipole method [110]. It has been shown that this method,
used typically for electrically large objects with an enormous number of
unknowns unsuitable for MoM, can also be used to compute characteristic
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modes [111, 112], and symmetries could be used to reduce the computational
complexity.

Symmetries could also be utilized to reduce the number of degrees-of-freedom in
topology optimization [113] which would result in accelerated design procedure
and also to designs more appealing to human eye. Alternatively, asymmetrical
structures can be penalized during the shape optimization process.

Another topic is a development of an algorithm that automatically detects all
symmetry operations under which the input mesh is invariant. That would
make the use of implemented algorithms easier for the user. In their current
version, it is required to supply the list of symmetry operations together with
the mesh.
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Modal Tracking Based on Group The-
ory

Published as: M. Masek, M. Capek, L. Jelinek, and K. Schab, “Modal Tracking
Based on Group Theory,” IEEE Transactions on Antennas and Propagation, vol. 68,
no. 2, pp. 927-937, Feb. 2020, DOI: 10.1109/TAP.2019.2943354.

Abstract—Issues in modal tracking in the presence of crossings and crossing
avoidances between eigenvalue traces are solved via the theory of point groups. The
von Neumann-Wigner theorem is used as a key factor in predictively determining
mode behavior over arbitrary frequency ranges. The implementation and capabilities
of the proposed procedure are demonstrated using characteristic mode decomposi-
tion as a motivating example. The procedure is, nevertheless, general and can be
applied to an arbitrarily parametrized eigenvalue problems. A treatment of modal
degeneracies is included and several examples are presented to illustrate modal
tracking improvements and the immediate consequences of improper modal tracking.
An approach leveraging a symmetry-adapted basis to accelerate computation is
also discussed. A relationship between geometrical and physical symmetries is
demonstrated on a practical example.

Index terms: Antenna theory, computer simulation, eigenvalues and eigenfunc-
tions, electromagnetic modeling, method of moments (MoM), modal analysis.

A.1 Introduction

Modal tracking is an important part of every procedure dealing with parametrized
eigenvalue problems. In antenna theory, eigenvalue problems—for example, the
problem defining characteristic modes (CMs) [49]—are commonly parametrized in
frequency and solved at a finite set of discrete frequency points. Therefore, tracking
is required to order and associate modes across the frequency band of interest so
as to obtain modal quantities which are smooth functions of frequency. A common
way of dealing with modal tracking is to employ correlation between modes [64–68].
Despite the success of correlation-based tracking [52], there are, however, scenarios
in which this technique fails to provide reliable results. One specific example where
correlation-based tracking becomes difficult in the vicinity of accidental degeneracies
or crossing avoidances [20, 114]. Point group theory [30, 32, 115] has recently been
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used to provide ground truth for determining whether modal degeneracies may
exist by means of the von Neumann-Wigner theorem and to show that if the object
under study exhibits no symmetry, traces of the characteristic numbers, as functions
of frequency, cannot cross [20, 72]. Simultaneously, it has been shown that when
symmetries are present, modes can be divided into separate unique sets called
irreducible representations (irreps) and that within these sets, modal crossings are
limited by simple, known features of each irrep. The problem of how to detect
symmetries and assign modes to irreps in the general case of multidimensional irreps
encountered in bodies with non-abelian symmetry groups [30] has not been solved.
Our goal in this work is to establish a robust modal tracking implementation based
on the fundamental modal crossing rules discussed in [72] capable of working with
non-symmetric, abelian symmetric, and non-abelian symmetric structures.

To accomplish this, a procedure for performing classification of modes is developed
for surfaces having any known symmetry point group. An application for broadband
characteristic mode tracking, which includes two approaches, is demonstrated. The
first, an a posteriori approach, deals with previously calculated modes and their
assignment into irreps. The second, an a priori approach, uses a symmetry-adapted
basis to block-diagonalize the underlying operator and divide the problem into a
series of smaller parts which are solved independently. Each part spans a separate
eigenmode subspace corresponding to a given irrep [56]. Computation speed is
remarkably accelerated in this latter approach due to the cubic dependence of com-
putation time on the number of discretization elements. Despite the aforementioned
differences, both methods divide modes into sets where traces of the eigenvalues
cannot cross, automatically solving the eigenvalue crossing/crossing avoidance issue.
A framework based on group theory presented in this paper is numerically imple-
mented on Rao-Wilton-Glisson (RWG) basis functions [51] and its capabilities are
demonstrated on characteristic mode decomposition [49]. It should, however, be
noted that the results are applicable to other modal decompositions or alternative
choices of basis functions as well.

The paper is organized as follows. Background theory is reviewed in SectionA.2
where characteristic modes are introduced as an example generalized eigenvalue
problem in SectionA.2.1. Point group theory and modal classification into irreps is
described in SectionA.2.2 and the utilization of a symmetry-adapted basis to reduce
the original problem is shown in Section A.2.3. Section A.3 describes a practical
implementation and basic results using an illustrative example. Further examples
of results are presented in Section A.4. Section A.5 is dedicated to a discussion
of several related topics: the importance of modal tracking in Section A.5.1, the
effective generation of a symmetry-adapted basis in SectionA.5.2, the reduction of
computational time of modal decomposition in SectionA.5.3 and the relationship
between geometrical and physical symmetries in SectionA.5.4. SectionA.6 concludes
the paper.

A.2 Background Theory

The following sections briefly summarize the theory of characteristic modes (Sec-
tionA.2.1) and point group theory (Sections A.2.2 and A.2.3). Details related to
modal tracking are emphasized.
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A.2.1 Characteristic Modes

Characteristic modes (CMs) [49] form a set of orthogonal solutions to a generalized
eigenvalue problem (GEP) [36]

XJn (r) = λnRJn (r) , (A.1)

in which Z = R+jX is the impedance operator [49] defined for a perfectly electrically
conducting body Ω as

ZJ (r) = n̂× n̂×E (J (r)) . (A.2)

In (A.2), r ∈ Ω, n̂ denotes a unit normal to surface Ω and E denotes the scat-
tered electric field produced by the electric current J (r) [116]. Each characteristic
vector Jn (r) and its corresponding characteristic number λn define a unique eigenso-
lution, completely independent of excitation, as being a sole function of geometry Ω
and angular frequency ω. The most appealing property of CMs is their ability to
diagonalize the impedance operator (A.2) as

⟨Jm (r) ,ZJn (r)⟩
⟨Jn (r) ,RJn (r)⟩ = (1 + jλn) δmn, (A.3)

where ⟨·, ·⟩ is the inner product

⟨A (r) ,B (r)⟩ =
∫
Ω

A∗(r) ·B(r)dr (A.4)

and δmn is the Kronecker delta.
The solution to (A.1) is typically approached using the method of moments

(MoM) [28] which recasts the original integro-differential problem into a matrix
problem, i.e.,

XIn = λnRIn, (A.5)

using a set of M basis functions {ψm (r)} to approximate the current density as

J (r) ≈
M∑

m=1

Imψm(r) (A.6)

and performing Galerkin testing [37], i.e.,

R+ jX = [zmn] = [⟨ψm (r) ,Zψn (r)⟩] . (A.7)

Within the discretized (matrix) form, the unknowns are column vectors of expan-
sion coefficients I ∈ CM×1, see [28]. If N characteristic modes are calculated, they
form a matrix [I] = [I1, . . . , In, . . . , IN ] ∈ CM×N with an associated vector of eigen-
values λ = [λ1, . . . , λn, . . . , λN ]. Notice that, theoretically, [I] is a square matrix
(M = N), however, in practice, the number of modes is typically limited to N ≪M
due to numerical constraints [52].

The necessity of modal tracking arises from the fact that the GEP (A.1) is
parametrized by angular frequency ω. Therefore, if (A.5) is to be solved at F
unique frequency points, its solution must be evaluated at each frequency point
independently. If collected together, the resulting matrix structure of the eigenvalues
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Figure A.1: Raw untracked (left) and correlation tracked (right) traces of
characteristic angles. Point markers indicate computed frequency samples.

reads [λ] ∈ RF×N . Generally, there is no guarantee that all of the eigenvalues (and
similarly for eigenvectors) in one column of [λ] will belong to the same mode, i.e.,
the modal data are not properly tracked over frequency. Consequently, the frequency
behavior of the individual characteristic modes cannot be effectively studied.

The effects of insufficient tracking are demonstrated in Figure A.1 on a practical
example of four parallel dipoles made of a perfect electric conductor (PEC) with
length L, width W = L/25, and separation distance d = L/2. Frequency is scaled
as electrical size ka (k is the free space wave-number and a is the radius of the
smallest circumscribing sphere) and spans from ka = 0.5 to ka = 5 with F = 46
equidistantly distributed frequency samples. The first N = 15 characteristic modes
were calculated in Antenna Toolbox for MATLAB (AToM) [29] usingM = 496 RWG
basis functions [51]. The left panel of Figure A.1 shows untracked eigenvalue modal
traces, while the right panel of the same figure shows modal eigenvalue traces tracked
using correlation between two neighboring frequencies [64, 65]. The characteristic
numbers λn are rescaled as characteristic angles δn, [47, 54]

δn = 180◦
(
1− 1

π
arctan (λn)

)
. (A.8)

The results presented in Figure A.1 demonstrate the impact of modal tracking as well
as some of the shortcomings of current and field correlation based tracking algorithms
previously discussed in the literature [66–68]. Specifically, it is observed that tracking
problems commonly occur in regions where modal eigenvalue traces cross or come
very near one another. Some traces are also unpredictably stopped while new traces
arise when the correlation value between modes at adjacent frequency samples do
not exceed some user-defined threshold.

While the preceding discussion focused on characteristic modes, many problems
in computational electromagnetics rely on the broadband solution of parametrized
eigenvalue problems in the form of

A (p) In = λnB (p) In, (A.9)

for which the same consideration of broadband tracking must be given for the proper
and consistent interpretation of results.
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A.2.2 Point Group Theory and Classification of Modes

This section introduces necessary elements of the theory of symmetry point groups [30,
32, 115] as well as key results from group theory which are relevant for the symmetry
classification of eigenmodes and eigenvalue tracking.

To begin, assume a surface Ω which supports a surface current density J (r).
The symmetry point group G of this object is the set G = {Ri} of all symmetry
operations R (e.g., identity E, n-fold rotations Cn, reflections σ, and their products)
to which the object is invariant. Let the vector space V contain all possible complex
current distributions J (r) on this object. The operation R maps V onto itself, i.e.,

RJ (r) = T (R)J
(
T−1 (R) r

)
∈ V, ∀J (r) ∈ V, (A.10)

or, equivalently, the operation R transforms one current on Ω into another current
on Ω. The matrix T (R) in (A.10) is a 3× 3 coordinate transformation matrix
corresponding1 to the operation R. If a finite basis {ψm(r)} is chosen to approximate
the space V according to (A.6), and if the basis is chosen to preserve the symmetry
of Ω (i.e., the object Ω is represented by a mesh which preserves all symmetries of
the object), then by (A.10),

Rψn (r) =

M∑
m=1

cmn(R)ψm (r) . (A.11)

Note here that R is any element of group G, and that the coefficients cmn(R) can
be collected in a mapping matrix C (R) = [cmn(R)]. Thus, by (A.6), the effect of R
on the current J (r) is realized by

RI = C (R) I, (A.12)

where RI is the vector of expansion coefficients corresponding to RJ (r). The set of
mapping matrices {C (R ∈ G)} define a matrix representation of G. The structure
and nature of these matrices is dependent of the basis chosen. Consider N current
expansion vectors In which form a modal basis. These can, e.g., be CMs defined
by (A.5). Equivalently, as shown in (A.11), the effect of R on a particular mode can
be expressed as

RIn =

N∑
m=1

dmn(R)Im, (A.13)

where the matrixD (R) = [dmn(R)] is a matrix representation of R in the modal basis.
Arranging all modal vectors I and RI into matrices [I] and C (R) [I], relation (A.13)
can also be written as

[I]D (R) = C (R) [I] . (A.14)

For a symmetrical object, subsets of modes exclusively map onto themselves with
each operation R ∈ G, [30]. This is observed, after the specific ordering of columns
in the matrix [I], as a block diagonalization of D (R),

D1(R) 0 0 0
0 D2(R) 0 0

0 0
. . . 0

0 0 0 DQ(R)

 = [I]−1C (R) [I] . (A.15)

1We assume that J (r) is a polar vector.
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Each collection of block matrices {Dq (R ∈ G)}, for a certain block num-
ber q ∈ {1, . . . , Q}, and its corresponding subset of the modal basis, is known
as an irreducible representation (irrep) of the group G, [30]. The characters
χq (R) = tr (Dq (R)) are commonly used to fully characterize the group G and
to classify modes within irreps. Note that the block matrices of a particular irrep
may be repeated multiple times along the diagonal of D (R), which means that
separate sets of modes may belong to the same irrep but map only onto themselves.
The dimension of the block matrices in an irrep is known as the dimension gα of
that irrep, where the superindex α is used throughout the paper to denote different
irreps2. For the rest of the paper, a particular block, e.g., Dq (R), corresponding to
an irrep α is denoted Dα (R).

Identifying irreps, the von Neumann-Wigner theorem [20] states that modal
degeneracies can only occur between modes of the same irrep up to the dimension of
that irrep. Given that the difficulties in tracking characteristic modes over frequency
largely stem from the accurate identification of degeneracies [114] (eigenvalue cross-
ings), this result is of great utility and provides an analytic ground truth for verifying
mode tracking algorithms. For example, this result states that two eigenvalue traces
may not cross if both belong to modes within the same Abelian (one-dimensional)
irrep. If a modal tracking algorithm under test outputs eigenvalue traces that do
cross in spite of this, we can deduce that the modal tracking was not performed
correctly. A similar situation occurs in higher-dimension irreps with continuously
degenerated modes, as discussed in SectionA.4.2.

A.2.3 Symmetry-Adapted Basis and Reduced Problems

The presence of symmetries is not limited to the a posteriori classification of modes
as described above, but it can be used to produce “symmetry-adapted” eigenvalue
problems that directly produce modes corresponding to a given irrep. To that point,
imagine that matrices Dα (R) are known. Then, according to [30], the left hand
side of

V α
i =

gα

g

∑
R∈G

d̃αii (R)C (R)v, (A.16)

is a transformed version of the arbitrary vector v which is “symmetry-adapted”

to the i-th degeneracy (dimension) of irrep α. Here, D̃ =
(
D−1

)T
stands for a

contra-gradient representation, and g =
∑

α (gα)2 is the order of group G. Here we
assign v as the columns of an M ×M identity matrix, so that

ρα
i =

gα

g

∑
R∈G

d̃αii (R)C (R) (A.17)

produces matrices ρα
i whose columns are “symmetry-adapted” vectors. Naturally,

there are only ηα = rank (Γα
i ) ≤M linearly independent columns in each matrix ρα

i .
Removal of the linearly dependent columns from the matrices ρα

i produces matri-
ces Γα

i of size M × ηα which are able to modify matrix operators of the physical
system at hand so that their eigenvectors belong solely3 to an irrep α. Explicitly,

2Standard designations for irreps are used in this paper: A and B for one-dimensional irreps, E
for two-dimensional irreps and T for three-dimensional irreps, see, e.g., [30].

3In the case of multidimensional representation, all matrices Γα
i for i ∈ {1, . . . , gα} must be

employed to obtain all modes belonging to an irrep α.
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having a generalized eigenvalue problem (A.9), a solution subspace of eigenvectors
belonging to an irrep α is found, assuming that in this irrep, due to the presence of

symmetry, an eigenvector I ∈ CM×1 can be composed as Γα
i Î

α
i , where Îαi ∈ Cηα×1.

Substituting into (A.9) and multiplying from the left by (Γα
i )

T results in

Âα
i Î

α
i,n = λα

i,nB̂
α
i Î

α
i,n, (A.18)

where

Âα
i = (Γα

i )
T AΓα

i , (A.19)

B̂α
i = (Γα

i )
T BΓα

i . (A.20)

The modes generated by the eigenvalue problem (A.18) belong solely to the irrep α.
The matrices Dα (R ∈ G) must be known in order to evaluate the reduction

matrices Γα
i . It is important, however, to realize that these can be obtained from any

eigenvalue decomposition using (A.15) on any object with the same symmetries. This
initial object can, therefore, be chosen to have a minimal number of basis functions,
making the evaluation of the matrices Dα (R ∈ G) computationally inexpensive.

A.3 Practical Evaluation of Required Matrices

An implementation of the methodology introduced in the previous sections is shown
on a test case, depicted in Figure A.2, consisting of a triangularized domain Ω, [117],
for which N = 5 RWG basis functions are generated. Construction of the matri-
ces C(R), D (R), and Γα

i is demonstrated using this simple object with symmetry
group4 G = {E, σyz

v , σxz
v ,Cz

2}.

A.3.1 Construction of Matrices C(R)

A necessary step to classify modes according to their symmetry properties is to
construct mapping matrices C (R ∈ G). Here we assume that each basis function is
mapped onto exactly one basis function under each symmetry operation within the
symmetry group of the system. Under this assumption, the behavior of symmetry
operation R is tested individually by (A.10) for all doublets of basis functions as

γm (R) = n : ψn (r) = sm (R) T (R)ψm

(
T−1 (R) r

)
, (A.21)

where the vector γ (R) contains an integer n at each positionm so that the basis func-
tions ψm and ψn map onto one another by the operation T (R) with a sign sm = ±1.
The vectors γ (R) and s (R) are constructed for all symmetry operations R ∈ G.

With all vectors γ (R ∈ G) and s (R ∈ G) known, the orthonormal mapping
matrices C (R ∈ G) = [cmn(R)], see (A.11) and (A.12), are constructed as

cmn (R) =

{
sm (R) if n = γm (R) ,
0 otherwise.

(A.22)

A particular example of this procedure is shown in Figure A.2, including the
vectors γ (R) and s (R), and the resulting matrices C (R ∈ G). Note that the trivial
results associated with the identity operator E are omitted.

4It is supposed that the set of operations G is known for a given structure.
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Figure A.2: An illustration of a simple symmetric structure with depicted RWG
basis functions {ψn (r)}. The structure belongs to point group C2v [30] with
symmetry operations G =

{
E, σyz

v , σxz
v ,Cz

2

}
. Vectors γ (R ∈ G), s (R ∈ G), and

matrices C (R ∈ G) are shown. The matrix C (E) is an identity matrix and is
omitted.

A.3.2 Construction of Matrices D(R)

The next step is the evaluation of matrices D(R) using (A.15). To do so, the
impedance matrix Z is computed and CMs are found by (A.5). The resulting modal
basis and corresponding matrices D(R) are depicted in Figure A.3 (the identity
matrix for identity operation E is omitted). In this case, the diagonal blocks in (A.15)
are of size 1× 1 which is a signature of the abelian nature of the C2v symmetry
group [30].

Collecting the unique traces from the on-diagonal block matrices (here directly
from diagonal entries) gives the character table. Notice that the trace record
corresponding to the B2 irrep is repeated twice indicating that there are two modes
in the matrix [I] belonging to the B2 irrep (the first and the fifth).

It is important to realize that diagonal blocks of the matrices D(R) and their
corresponding traces are a property of given symmetry. Therefore, once calculated,
they can be reused for all structures of the same point group.

A.3.3 Construction of Symmetry-Adapted Basis Γα

The final step is the construction of symmetry-adapted bases which are used for
the block-diagonalization of the eigenvalue problem. The matrices ρα

i are generated
from (A.17) and only

M =
∑
α

gαηα, (A.23)

linearly independent columns are kept in matrices Γα
i , as depicted in Figure A.4.

For a given discretization, the symmetry-adapted bases Γα
i are utilizable either to

compress an arbitrary eigenvalue problem as in (A.18) in order to find solutions
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Figure A.3: Eigenvectors [I] computed by (A.5) at ka = 0.5 and corresponding
matrices D (R ∈ G) are shown for the structure depicted in Figure A.2. Each
vector is normalized resulting in a = 1.764 and b = 1.616. Association of modes
with particular irreps is performed by comparing the traces of submatrices within
matrices D (in this case simply the values on the diagonal of matrices D) and
values in character table. This association is highlighted by colored squares. Here
{α} = {B2,A1,A2,B1,B2}.
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Figure A.4: Matrices ρα and symmetry-adapted basis Γα for each irrep of the
structure in Figure A.2.

within a given irrep only, or to establish a current solutions fulfilling the constraints

imposed by symmetries of a given irrep, i.e., Iαi = Γα
i Î.
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A.4 Examples

Using the implementation techniques described in SectionA.3, here we give practical
examples of the mode tracking framework developed in SectionA.2. The methodology
is presented on examples of increasing complexity, namely:

1. four dipoles (simple abelian, SectionA.4.1),

2. an equilateral triangle (the simplest non-abelian, SectionA.4.2),

3. a cubic array (complex non-abelian, SectionA.4.3),

4. a radiator above a ground plane (SectionA.4.4).

Throughout this section the eigenvalues have only been sorted according to their
values. Potential vertical shifts in the modal spectrum, which are caused by an
abrupt appearance or disappearance of a mode, have been treated according to
SectionA.A.

A.4.1 Example 1: Four Dipoles

Characteristic modes of a rectangular array of four dipoles treated in Figure A.1
are evaluated in this section. The geometry and meshing of the array are described
in Section A.2.1. The point symmetry group of this object is identical to that of
Figure A.2, i.e., G = {E, σyz

v , σxz
v ,Cz

2}. The point group is abelian with four irreps,
see character table in Figure A.3, therefore, only non-degenerate modes exist in each
irrep. From the point of view of SectionA.2.3, the symmetry-adapted eigenvalue
problems (A.18) give non-degenerated modes.

Tracked modes for this structure are shown in Figure A.5. The top figure
shows results from correlation-based tracking while in the bottom figure, each color
corresponds to one irrep (to a given α in (A.18)) and modes within the irrep were
tracked using the symmetry-based algorithm proposed in this paper. Note that
the correlation-based algorithm has problem with proper connections of traces of
characteristic angles near ka ≈ 2.6 and that some modes are connected incorrectly
(red, orange and light green lines in top figure). These issues are not present in the
symmetry-based tracking. It can be observed that tracks are crossed only between
modes from different irreps, i.e., modal crossings and modal crossing avoidances are
no longer an issue. It is also important to stress that this simple procedure is less
computationally expensive than correlation based tracking, see SectionA.5.3, and
yields correct results irrespective of the spacing parameter d. On the contrary, the
correlation algorithm performs poorly for decreasing d and/or increasing number of
dipoles.

Examples of eigencurrents of characteristic modes from each irrep are depicted
in Table A.1.

A.4.2 Example 2: Equilateral Triangle

The equilateral triangle with side length ℓ was chosen as the simplest example of
a non-abelian symmetric structure. Equilateral triangles have the point symmetry
group C3v which possesses two one-dimensional and one two-dimensional irreps,
see Table A.2 for its character table. According to group theory [30], the modes
belonging to this two-dimensional irrep E exist in degenerated pairs with identical
eigenvalues at all frequencies. Thus, there are two eigenvalue problems (A.18)
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Figure A.5: Tracked characteristic angles of the four-dipole array treated in
Figure A.1. Four modes of (A.18) with the smallest eigenvalue have been computed
for every irrep of the corresponding symmetry point group. The collection of all
these modes and their tracking via a correlation-based algorithm is shown in the
top panel. The bottom panel shows sorted characteristic angles when each irrep
was solved separately via the procedure described in this paper. Markers on every
fifth frequency sample are depicted for clarity. Animation of this figure is available
in [118].

Table A.1: Current distribution of the first two modes of each irrep of the
four-dipole array. Only directions of currents on each dipole is depicted, different
amplitudes are not considered.

irrep ka I1 λ1 I2 λ2

A2 2.8 0.293 30.9

B2 2.8 −0.313 2.15

A1 5.6 −0.375 0.332

B1 5.6 −0.119 1.60

for α = E, each of them giving one member of the completely degenerated modal
pair. It is worth noting that the separation into the degenerated pair (the form of
matrix Γα

i ) is independent of frequency, i.e., modal tracking is possible even within
this pair.

Despite the aforementioned degeneracy, the treatment of modal crossings can be
performed in exactly the same manner as for abelian point groups. The result of
this procedure is depicted in Figure A.6 where the lines belonging to irrep E are
twice degenerated. Examples of eigencurrents of characteristic modes from each
irrep are depicted in Figure A.7.
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Table A.2: Character table for point group C3v, [30].

C3v E 2C3 3σv

A1 +1 +1 +1
A2 +1 +1 −1
E +2 −1 0
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Figure A.6: Tracked characteristic angles of an equilateral triangle. Only the
six lowest eigenvalue modes are computed. Notice, the set of the most significant
modes changes with frequency which leads to truncation and appearance of modes,
see SectionA.A. Each color represents one irrep. Red lines with square markers,
which correspond to irrep E, are twice degenerated. Animation of this figure is
available in [118].

Table A.3: Character table for point group Td, [30].

Td E 8C3 3C2 6S4 6σd

A1 +1 +1 +1 +1 +1
A2 +1 +1 +1 −1 −1
E +2 −1 +2 0 0
T1 +3 0 −1 +1 −1
T2 +3 0 −1 −1 +1

A.4.3 Example 3: A Cubic Array

As a complex example, we examine the 3D cubic array of bowtie antennas depicted
in Figure A.8. The point symmetry group of this object is Td with character table
shown in Table A.3. Modes of this structure exhibit three-dimensional irreps and
an intricate modal spectrum which is shown in Figure A.9 and Figure A.10.

The complexity of the modal spectrum is enormous, with many modal crossings
and crossing avoidances, see Figure A.9. Yet, the framework developed in this
paper properly deals with all of them via a straightforward tracking procedure, see
Figures A.9 and A.10.
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(a) irrep A1 (λ = −922.9)

x

y

z

(b) irrep A2 (λ = 26.49)

(c) irrep E (λ = −4.893)

Figure A.7: First characteristic modes of each irreducible representation of
equilateral triangle at electrical size ka = 1.

Table A.4: Character table of point group Cs (first three columns) [30] and
characterization of modes and physical symmetries with respect to the modes
belonging to irreps A′ and A′′.

Cs E σh solution physical symmetry (GND)

A′ +1 +1 even (↑↑) PMC
A′′ +1 −1 odd (↑↓) PEC

A.4.4 Characteristic Modes of a Radiator Above a Ground Plane

The procedure presented in this paper can advantageously be applied to scenarios
where an antenna is placed over a PEC ground plane, see Figure A.11a, and only
the characteristic modes of the antenna are needed. This task is often approximated
by replacing the ground plane with an image of the antenna [119], see Figure A.11b.
In such a case, only the odd modes have to be extracted, since the even modes are
not valid solutions to the original problem depicted in Figure A.11a.

The same task can be solved via point group theory. The arrangement in
Figure A.11a is, in fact, equivalent to the one depicted in Figure A.11c, i.e., the
presence of a physical symmetry can be replaced by the Cs symmetry group, see
Table A.4 for its character table. The symmetry operator σh splits the spectrum of
modes into two irreps, A′ and A′′. Irrep A′ contains only even modes, i.e., those
corresponding to the presence of PMC, while irrep A′′ contains all the remaining
(odd) modes, i.e., those corresponding to the presence of PEC.

To gather all antenna modes over the PEC symmetry plane, the symmetry-
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xy

z

Figure A.8: Six bowtie antennas arranged to a cubic array belonging to the Td

point symmetry group.

adapted basis ΓA′′
is constructed and the impedance matrix Z describing the

original problem is reduced as

ẐA′′
=
(
ΓA′′)T

ZΓA′′
(A.24)

and substituted into (A.18) with a particular choice of Âα
i = Im{ẐA′′}

and B̂α
i = Re{ẐA′′} respectively. A favorable aspect of this procedure is a re-

markable speed-up as compared to the evaluation of the problem from Figure A.11b.
Notice that the same effect can be achieved via the incorporation of PEC or perfect
magnetic conductor (PMC) boundary conditions directly into the Green’s function
of the problem [120]. With this modified Green’s function, the system matrix within
the MoM framework will attain exactly the same form as in (A.24).
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Figure A.9: Tracked characteristic angles of a cubic array depicted in Figure A.8.
Four modes with the lowest eigenvalue (not counting degeneracies) are shown
for every irrep. Lines corresponding to irrep E, are twice degenerated, lines
corresponding to irreps T1 and T2 are three times degenerated. The highlighted
area is enlarged in Figure A.10. Only every fifth marker is depicted for clarity.
Animation of this figure is available in [118].
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Figure A.10: Enlarged area from Figure A.9. The traces depicted by the same
color cannot cross as they belong to the same irrep. Modes of irreps T1 and T2

are plotted in gray color for clarity.
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Figure A.11: (a) Original arrangement of an antenna motif above ground plane
GND, (b) removal of the ground plane via image theory, and (c) point group Cs

with symmetry operator σh (for the character table, see Table A.4).
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A.5 Discussion

Point group theory establishes a solid theoretical background for the thorough
discussion of several questions related to modal decomposition and mode tracking
in general. Some recurring questions in this area (yet-to-be fully answered) are
discussed in the following section from the perspective of point group theory.

A.5.1 On the Physical Importance of Modal Tracking

This section addresses the question of whether modal tracking is or is not needed.
Central to this discussion is the comparison of modal interpretations in the time
and time-harmonic (frequency) domains.

A.5.1.1 Tracking in the Time-Harmonic Domain

An interesting dilemma associated with modal tracking is depicted in Figure A.12.
Both panels show very similar situations consisting of two dipoles placed in parallel.
The dipoles in the left panel have exactly the same lengths ℓ. The dipoles in the
right panel have lengths ℓ and ℓ+∆ℓ. Although the electromagnetic behavior of
both structures must be very similar (especially as ∆ℓ→ 0), one can immediately
notice qualitatively different results arising from symmetry-based mode tracking.
The dipoles with the same lengths are symmetrical, with the two plotted modal
traces belonging to different irreps, and there we observe the expected eigenvalue
trace crossing. The second setup (right panel) is not symmetrical, only the identity
operation E exists (point group C1), and therefore all characteristic modes belong to
the same irrep so no modal traces can cross (as dictated by the von Neumann-Wigner
theorem).

Owing to the arbitrarily small alteration which may affect this discrete change
in behavior, we may be led to the conclusion that no physical phenomenon should
depend on whether the eigenvalues as functions of frequency cross or not. It should
be sufficient to interpret modal data independently at each frequency5. Such a
conclusion is correct if modes at a single frequency are desired or if summation
formulas such as [49]

I (ω) =
∑
n

an (ω) In (ω) (A.25)

are used. If so, mode ordering is irrelevant. A different situation arises when one
wants to perform (A.25) in the time domain or to study the impulse response of
a single mode, i.e., F−1 {an (ω) In (ω)}, where F−1 denotes an inverse Fourier’s
transform. In such a case, it must be stated that the solution presented in Figure A.12
is the only correct solution6 for both arrangements irrespective of how close in
appearance (how small ∆ℓ is) the structures are to each other.

A.5.1.2 Modal Currents in the Time Domain

This subsection shows a simple example of the influence of improper modal tracking
on time domain modal characteristics. As an example, two dipoles from the left

5This argument has already been raised by R. Mittra during the IEEE AP Symposium in
2016.

6If improperly tracked, the spectrum is discontinuous which leads to unphysical time-domain
artifacts with violation of causality being a notable example.
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Figure A.12: The first odd and even characteristic modes in the vicinity of their
resonance. In the left panel, the dipoles have the same length, in the right panel
the lengths are slightly different.

panel of Figure A.12 are used. The two most significant modes at first resonance
were computed for electrical sizes ranging from ka = 0.04 to ka = 16 in F = 400
frequency samples. Dipoles were afterwards fed in their centers by two delta gap
sources of the same orientation and amplitude across the entire frequency sweep.
Modal contributions to the total time domain current at the source have been
evaluated with an FFT algorithm after interpolation to 217 frequency points of
a double-sided spectrum and using a Blackman-Nuttall Window [121]. Prior to
the FFT evaluation, eigencurrents were aligned at subsequent frequency samples.
This has to be made because the direction of the eigencurrent is arbitrary with
respect to (A.5). The results for properly tracked and improperly tracked modes are
depicted in Figure A.13. As previously argued, these data demonstrate how proper
tracking ensures meaningful time domain responses of the individual modes.

A.5.2 Effective Generation of Symmetry-Adapted Bases

It is advantageous to use the a priori tracking described in SectionA.2.3 and Sec-
tion A.4 owing to its straightforward implementation and capability of reducing
the computational burden of the eigenvalue decomposition as shown by (A.27).
However, to accomplish this, the symmetry-adapted bases Γα

i must first be con-
structed. Consequently, one “pilot” eigenvalue decomposition (A.9) is needed to
evaluate the D (R) matrices. One straightforward option is to take A ≡ X and
B ≡ Ψ, where [61]

Ψ = [⟨ψm (r) ,ψn (r)⟩] . (A.26)

As compared to the immediate choice of characteristic mode basis (X, R), the modes
generated by (X, Ψ) have better numerical dynamics.

A.5.3 Reduction of Computational Time With A Priori Tracking

Utilization of a priori tracking makes it possible to significantly accelerate modal
decomposition. Assuming M ≫ 1 discretization elements, the speed-up, expressed
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Figure A.13: The influence of improper modal tracking on time domain charac-
teristics. The left column represents modal tracking according to this paper. The
right column represents improper tracking. Time domain responses show modal
contributions of the two modes to the total current flowing through delta gaps
feeding the structure.

Table A.5: Reduction of computational time of characteristic mode decomposition
for the a priori tracking scheme. It is assumed that generalized Schur decomposition
(QZ algorithm) is applied [40].

G Tpg/T G Tpg/T

C1 1 C2v 1/24

Cs 1/23 Td 0.013

as a ratio between computational time Tpg needed to evaluate all reduced prob-
lems (A.18) and computational time T needed to evaluate the original problem (A.5),
is expressed as

Tpg

T
∝
∑
α

gαNα

N

(
ηα

M

)2

, (A.27)

where Nα is the number of modes in one degeneration of irrep α, i.e., N =
∑

α g
αNα.

The relation between ηα and M is mentioned in (A.23). Note that gαNα ≤ N ,
ηα ≤M . Typical speed-ups for symmetry groups treated in this paper are depicted
in Table A.5.
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Table A.6: A physical realization of irreps generated by the C2v point group.

C2v plane yz plane xz

A1 PMC PMC
A2 PEC PEC
B1 PEC PMC
B2 PMC PEC

A.5.4 Relationship between Geometrical and Physical Symmetries

With respect to the theory developed in this paper and the example in SectionA.4.4,
it is interesting to point out that the correspondence between geometrical mirror
symmetries and physical symmetries generated by PEC and PMC planes is general.
Specifically, in the case of a polar vector, such as electric current density J (r), the
introduction of a PMC plane is identical to a reflection plane, while the introduction
of a PEC plane is identical to a mirror plane with odd parity (a reflection plus
change of a sign). In the case of pseudovectors, such as magnetic current densityM ,
the roles of the PEC and PMC planes are interchanged. This means that in the
case of abelian reflection groups (groups in which all operations can be generated
as combinations of reflections), such as C2v, there exists a “physical” equivalent of
every irrep which is generated by the PEC and PMC planes.

Let us take the C2v point symmetry group with G = {E, σyz
v , σxz

v ,Cz
2 = σxz

v σyz
v }

as an example. Characters of this group, see Figure A.3, can be interpreted as follows.
A character with value +1 means that the representative current density is invariant
with respect to a given set of reflections, i.e., the mirror planes can be substituted
by PMCs. A character with value −1 means that the sign of the representative
current must be inverted if the current is to stay invariant, i.e., such mirror planes
can be substituted by PECs. Using the aforementioned rules, a character table
from Figure A.3 can be converted into Table A.6, from which reduced simulations
and calculations may be derived. This physical representation produces exactly
the same modes as those generated by reduced eigenvalue problems (A.18) of the
corresponding irreps.

A.6 Conclusion

A general framework utilizing point group theory for an arbitrarily parametrized
eigenvalue problem was presented. A process uniquely classifying modes into
irreducible representation was described. This classification method is independent of
mesh density and requires only that the selected mesh and basis functions accurately
represent the symmetry of the underlying structure. Applying the von Neumann-
Wigner theorem on these irreducible representations conclusively decides when
traces of eigenvalues can or cannot cross and, thus, the problem of crossing and
crossing avoidance is solved. An important consequence is that eigenvalue traces of
modes belonging to a non-symmetric object can never cross. An understanding and
treatment of degenerated modes was also provided.

Two approaches, a priori and a posteriori, were shown and their performances
were demonstrated on characteristic mode decomposition. Examples of varying
complexity confirmed the validity and robustness of the proposed method. The
a priori method was shown to considerably reduce computational time with respect
to the standard eigenvalue solution.
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Figure A.14: Two most significant modes at every frequency sample of ir-
rep α = E of an equilateral triangle. The left panel shows raw unsorted data,
the middle panel shows eigenvalues sorted with respect to their eigenvalues, and,
finally the right panel shows data after the removal of vertical shifts.

Future efforts may extend the presented method to include translational sym-
metries. The devised framework might be utilized for the design of non-correlated
feeding networks and for handling degeneracies when seeking sets of optimal currents.
Advanced topics, such as chirality and its role in modal formalism, might also be
rigorously addressed.

The robust detection of symmetries for arbitrary objects would allow for a fully
automated implementation of the proposed procedure.

A.A Correction of Vertical Shifts in Symmetry-Based
Tracking

Under the assumption that all modes of the structure are available, the procedure
described in this paper can track them flawlessly. In practice, however, we deal with
a fixed (and usually small) number of the most significant (e.g., smallest eigenvalue
magnitude) modes, i.e., N ≪M . Such a modal set naturally changes with frequency
and, at specific frequencies, the appearance of a new mode and disappearance of an
old mode occurs. When the tracking framework presented in this paper is used on
this modal set, a global vertical shift of modal tracks (in a modal index) shows up
every time a mode appears or disappears, see middle panel of Figure A.14.

When frequency discretization is dense enough, the detection of the aforemen-
tioned shifts and their remedy can be based on the continuity of modal tracks, which
is, in this paper, evaluated by

κ
(
λi
n

)
=

2λi
n − λi+1

n − λi−1
n

2max
{
|λi

n| ,
∣∣λi+1

n

∣∣ , ∣∣λi−1
n

∣∣} , (A.28)

where i is a frequency index. A value of κ = 0.5 is used as a detection threshold.
After detecting a vertical shift, modal indices are globally shifted in order to minimize
the value of κ. The result of this procedure is shown in the right panel of Figure A.14
and throughout SectionA.4.
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no. 9, pp. 5365-5376, Mar. 2021, DOI: 10.1109/TAP.2021.3061161.

Abstract—A technique of designing antenna excitation realizing orthogonal
states is presented. It is shown that a symmetric antenna geometry is required in
order to achieve orthogonality with respect to all physical quantities. A maximal
number of achievable orthogonal states and a minimal number of ports required
to excite them are rigorously determined from the knowledge of an antenna’s
symmetries. The number of states and number of ports are summarized for
commonly used point groups (a rectangle, a square, etc.). The theory is applied to
an example of a rectangular rim where the positions of ports providing the best
total active reflection coefficient, an important metric in multi-port systems, are
determined. The described technique can easily be implemented in existing solvers
based on integral equations.

Index terms: Antenna theory, computer simulation, eigenvalues and eigenfunc-
tions, electromagnetic modeling, method of moments, modal analysis.

B.1 Introduction

The ever-growing requirements on data throughput capacity [122] and simulta-
neous full occupancy of the radio spectrum has led to many novel concepts in
recent decades [123]. One of the most successful techniques is the multiple-input
multiple-output (MIMO) method [124, 125] heavily utilized in modern communica-
tion devices [126, 127]. When considering MIMO spatial multiplexing, spatial corre-
lation has a strong impact on ergodic channel capacity [128], therefore, low mutual
coupling between the states generated by individual antennas is required [129, 130].

In this paper, free-space channel capacity is increased by considering spatial
multiplexing realized by orthogonal electromagnetic field states excited by a multi-
port radiator [131–133]. This assumes that orthogonal states are a good starting
position for realistic channels where stochastical effects cannot be neglected. Instead
of an array of transmitters [134], the orthogonality is provided by a general multiport
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antenna system. This approach addresses the question of how many orthogonal
states can, in principle, be induced by a radiating system of a given geometry and
how many localized ports are needed to excite them separately.

Previous research on this topic utilized characteristic modes [49, 135] which
provide orthogonal states in far field. Unfortunately, as shown by the long history
of attempts within the characteristic mode community [63, 74, 77, 82, 83, 136–141],
this task is nearly impossible to accomplish, as entire-domain functions defined over
arbitrarily shaped bodies cannot be selectively excited by discrete ports [142].

Many other methods exist to characterize and approach the maximal capacity,
for both a special case of spherical geometry [143, 144] and for arbitrarily shaped
antennas [145–147]. The number of degrees of freedom represented by electromag-
netic field states were studied on an information theory level as well [148–150]. As
with the characteristic modes approach, in all these cases the optimal coefficients do
not prescribe any particular excitation of a selected or optimized antenna designs.
This issue was solved in [151] utilizing a singular value decomposition of excitation
coefficients represented in spherical wave expansion and in [109] by employing a
port-mode basis [55]. The orthogonal radiation patterns are excited, however, the
schemes are not orthogonal with respect to other physical operators, leading to
unpleasant effects, such as non-zero mutual reactances [152].

The situation changes dramatically for a structure invariant under certain sym-
metry operations, including rotation, reflection, or inversion. Certain symmetry
operations were utilized in [131] and [153], however, a general approach can be
reached only by applying point group theory [30] which allows modes computed by
arbitrary modal decomposition to be classified into several irreducible representations
(irreps) which are orthogonal to each other. Spherical harmonics [43] of a different
order are a notable example of such an orthogonal set of states. A known property
of physical states selected arbitrarily from two different irreps is that all mutual
metrics are identically zero [114]. This useful property has already been utilized
for the block-diagonalization of the bodies of a revolution matrix [56] and further
study reveals interesting properties regarding the simultaneous excitation of perfectly
isolated states [79, 154]. An additional benefit is that selective excitation is possible
since the antenna excitation vectors may follow the irreducible representations of
the underlying structure [155].

The key instrument employed in this work is the group theory-based construction
of a symmetry-adapted basis [30] and block-diagonalization of the operators. This
methodology leads to a fully automated design, without the necessity of a visual
inspection or manual manipulation of the data [86]. The upper bound on the number
of orthogonal states and the lower bound on the number of ports are rigorously
derived only from the knowledge of symmetries. It is observed that the later number
is significantly lower than the number of ports utilized in practice [83]. The placement
of a given number of ports maximizing a selected antenna metric is investigated
through combinatorial optimization [156] over vector adapted bases.

The entire design procedure can easily be incorporated into a simple algorithm,
thus opening possibilities to analyze MIMO antennas automatically. All findings
are demonstrated on a set of canonical geometries. The figure of merit classifying
the performance of MIMO radiating systems is the total active reflection coefficient
(TARC) [157], however, all the presented material is general and valid for all operators
and all metrics.

The paper is structured as follows. The theory is developed in Section B.2,
primarily based on point group theory and eigenvalue decomposition. The basic
consequences are demonstrated on an example in SectionB.3. SectionB.4 addresses
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Table B.1: Three examples of system states qm and associated operators A
preserving orthogonality in the sense of (B.3). The algebraic representation of
states Qm, and operators A, is expressed in a basis {ψn(r)}, see SectionB.A for
details. All quantities depicted in the table are subsequently introduced throughout
the paper.

current densities far fields excitation
characteristic modes [49] far-field patterns [158] port modes [159]

qm = Jm(r) qm = Fm(ϑ, φ) qm = Ei
m(r)

A1 = X0, A2 = R0 A = R0 = Re {Z0} A = y = z−1

Qm = Im Qm = Im Qm = vm

A1 = X0, A2 = R0 A = R0 = Re {Z0} A = PHZ−1P

the important questions of how many orthogonal states are available and how many
ports are needed to excite them independently. The optimal placement of a given
number of ports is then solved in SectionB.5 via an exhaustive search. The paper is
concluded in SectionB.6.

B.2 Orthogonal States

Let us assume antenna metric p defined via quadratic form

p (qm, qn) = ⟨qm,A (qn)⟩ , (B.1)

where qm and qn are states of the system (e.g., modal current densities, modal
far fields, or excitation states, see Table B.1), A is a linear complex operator,
see SectionB.A for representative examples, and ⟨·, ·⟩ denotes the inner product

⟨a (r) , b (r)⟩ =
∫
Ω

a∗(r) · b(r) dV, (B.2)

where a (r) and b (r) are generic vector fields supported in region Ω, r ∈ Ω. For
the purpose of this paper, orthogonality of states is further defined as

p (qm ∈ Si, qn ∈ Sj) = ζijmnδij , (B.3)

where {Si} are disjoint sets of states q, ζ are normalization constants and δij is a
Kronecker delta.

In order to obtain a numerically tractable problem, procedures such as the method
of moments (MoM) [28] or finite element method (FEM) [38] are commonly employed,
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recasting states q, operators A, and sets S into column vectors Q, matrices A [39],
and linear vector spaces S, respectively, see Table B.1 and SectionB.A. Within such
a paradigm, the orthogonality (B.3) can be written as

QH
mAQn = 0 : Qm ∈ Si, Qn ∈ Sj , (B.4)

which means that matrix A is block-diagonalized in the basis generated by these
states.

Difficulties in finding orthogonal sets of vectors strongly depend on the number of
operators {Ai} with respect to which relation (B.4) must simultaneously be satisfied.
In the case of a sole operator {A} or two operators {A1,A2}, the solution to a
standard AQ = λQ or a generalized A1Q = λA2Q eigenvalue problem gives vectors
which diagonalize the underlying operators [36]. The well-known example is the
characteristic modes decomposition [49] defined as

X0Im = λmR0Im, (B.5)

where Im are the characteristic modes, λm are the characteristic numbers,
and Z0 = R0 + jX0 is the vacuum impedance matrix defined in Section B.A.
Multiplying (B.5) from the left by the nth characteristic mode In and consider-
ing unitary radiated power of each mode, we see that matrices X0 and R0 are
diagonalized,

1

2
IHnX0Im = λnδmn, (B.6)

1

2
IHnR0Im = δmn, (B.7)

generating orthogonality in reactive and radiated power, respectively. In the case of
three or more operators, simultaneous diagonalization is possible only under special
conditions (e.g., mutually commuting matrices). For example, choosing a third
matrix W = ω∂X0/∂ω, [160], it is realized that

1

2
IHnWIm = wmn ̸= wmnδmn, (B.8)

i.e., characteristic modes, in general, only diagonalize matrices X0 and R0. However,
when point symmetries are present, at least simultaneous block-diagonalization can
be reached and, as explained in the following sections, orthogonal states with respect
to all operators describing the physical behaviour of the underlying structure can be
easily established.

B.2.1 Orthogonal States Based on Point Symmetries

In the case of symmetrical objects (see examples of symmetry operations in Figure B.1
and sketches of several point groups in Figure B.2), point group theory [30] shows
that physical states of the system can be uniquely divided into disjoint sets called
species. For each such set, a rectangular matrix Γ(α,i) can be constructed so that

Â(α,i) =
(
Γ(α,i)

)T
AΓ(α,i) (B.9)

is a single block of a block-diagonalized matrix Â = ΓTAΓ with matrix Γ accumulat-
ing all blocks Γ(α,i) side by side. Indices α and i form species (α, i), with α denoting
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σv2

σv1 σd1

σd2

C4

C2
4

C3
4

E1 2

34

O

R 1 2 3 4

E 1 2 3 4

σv1 2 1 4 3
σv2 4 3 2 1
σd1 3 2 1 4
σd2 1 4 3 2

C4 2 3 4 1

C2
4 3 4 1 2

C3
4 4 1 2 3

Figure B.1: An example of symmetry operations—a square. This structure
belongs to point group C4v [30] and has eight symmetry operations: identity E, four
reflections σ and three rotations C. The table shows how each node is transformed
via each symmetry operation.

selected irreducible representation (irrep) and i (α) ∈ {1, . . . , g(α)} counting along a

dimension of the selected irrep [30]. The rectangular matrix Γ(α,i) will be called a
symmetry-adapted basis and its construction within the MoM paradigm is detailed
in [161].

Let us recall once again the characteristic modes (B.5) and their lack of orthogo-
nality with respect to stored energy (B.8). Possessing a symmetrical structure and
considering block-diagonalization (B.9) of matrices R0, X0, and W, the characteris-
tic modes

I(α,i)
m = Γ(α,i)Î(α,i)

m (B.10)

with
X̂

(α,i)
0 Î(α,i)

m = λmÎ(α,i)
m R̂

(α,i)
0 , (B.11)

belong exclusively to species (α, i) [161]. In such case, the relation (B.8) changes to

1

2

(
I(α,i)
n

)H
WI(β,j)m = wmnδαβδij , (B.12)

which means that the characteristic modes from different irreps (α ̸= β), or from
the same irrep but different dimension (i ̸= j), are orthogonal with respect to stored
energy as well. This statement can be generalized to all operators resulting from a
MoM paradigm, see examples in SectionB.A or in [61].

The relation (B.9) states that columns of matrices Γ(α,i) form vector spaces S

in (B.4), consequently the columns of Γ(α,i) can be desired vectors Q. In such a
case, the orthogonality (B.4) holds simultaneously for all operators {Ai} describing
the physical behavior of the underlying structure whenever two vectors belong to
different species.

Notice that the utilization of symmetries induces the pattern diversity, see the
second column of Table B.1, and allows to create several orthogonal states, which
are not affected by, and does not have the influence on, used multiplexing technique,
thus, for example, time or code diversity can be applied at each orthogonal state to
further increase the capacity of the system.
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C2v
C3v

C4v

2π/n

Cnv

D2h

D4h

Figure B.2: Examples of various point groups. Colored regions show generator of
the structure, i.e., the minimal part of the object from which the entire structure
can be constructed via symmetry operations.

B.3 Illustrative Example

This section demonstrates the usefulness of the point group-based block diagonaliza-
tion (B.9) to obtain orthogonal states.

The design procedure is illustrated on the example of a rectangular plate of
dimensions 2L × L and of electrical size ka ≈ 10.19 (k abbreviates a free-space
wavenumber and a denotes the radius of the smallest sphere circumscribing the plate),
which was used in [83] to construct orthogonal states via the selective excitation
of characteristic modes (CMs). The CMs in [83] were visually separated into four
“groups” (using the nomenclature of [83]), and voltage sources (ports) were associated
with each such group so as to provide maximum excitation of the dominant CM
of each group. In order to independently control four sets of modes, eight voltage
sources (delta gaps) were used. The structure and positions of voltage sources
used in [83] are shown in Figure B.3. Unit voltages were considered with polarity
determined by the second column of Table B.2.

The point group theoretical treatment introduced in SectionB.2.1 offers a different
solution to the same problem. The underlying object has four point symmetries
(identity, rotation of π around z-axis and two reflections via xz and yz planes) and
belongs to the C2v point group (see Figure B.2) which possess four one-dimensional
irreps [30]. The number of distinct species1 introduced in SectionB.2.1 is four, each

being connected to a distinct matrix Γ(α,1). Within a standard notation [30], these
irreps are listed in the third column of Table B.2.

As mentioned in SectionB.2.1, any columns of matrices Γ(α,1) [161] can be used

as excitation vectors V(α,1), see SectionB.B, to enforce orthogonality. To minimize
the number of voltage sources used, it is advantageous to select those columns which
have non-zero elements at the same positions across all species. In the specific case
of Figure B.3, matrices Γ(α,1) also contain columns with only four non-zero entries
(i.e., with four voltage sources) at positions corresponding to ports 1–4 shown in
Figure B.3 in blue. Orientations of connected unit voltage sources are shown in

1Only one-dimensional irreps exist in this case, i.e., dimensionality of each irrep α is g(α) = 1.
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Figure B.3: Port locations on a rectangular plate. Reprinted from [83, Fig. 5].
Arrows show the orientation of the voltage sources.

Table B.2: Orthogonal excitation states for a plate from Figure B.3. The second
column is a solution found in [83, Table IV]. Numbers refer to the voltage source
in Figure B.3 and superscripts + and − denote its orientation with respect to
the directions in Figure B.3. The third column denotes irreps designation in the
notation of point group theory [30]. The last column shows a solution via the only
four voltage sources described in this paper.

Set Ports [83, Table IV] irrep α Four ports

S1 1+, 2−, 3+, 4− A1 1+, 2−, 3+, 4−

S2 5+, 6+ B1 1+, 2−, 3−, 4+

S3 7+, 8+ B2 1+, 2+, 3+, 4+

S4 7+, 8− A2 1+, 2+, 3−, 4−

the last column of Table B.2. This means that the eight ports used in [83] are not
necessary to provide four orthogonal states.

This example introduces a series of questions of fundamental importance for
multiport and multimode devices:

Q1) How many orthogonal states, with respect to all physical operators Ns, can be
found for a structure belonging to a specific point group?

Q2) What is the lowest number of ports Np that ensures a given number of
orthogonal states?

Q3) Where should ports be placed to maximize the performance of a device, with
respect to a given physical metric, to maintain the orthogonality of states?

These questions are addressed throughout the paper using point group theory
revealing important aspects of the symmetry-based design of orthogonal states.
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B.4 Excitation States Based on Point Group Theory

Referring to [161, eq. (16)], symmetry-adapted excitation vectors can be constructed
as

V(α,i) (ξ) =
g(α)

g

∑
R∈G

d̃
(α)
ii (R)C (R)V (ξ) , (B.13)

which is a linear map from excitation vector V (ξ) ∈ CNu×1 (see SectionB.B) onto

a symmetry-adapted excitation vector V(α,i) (ξ) ∈ CNu×1 that satisfies(
V(α,i)(ξ)

)H
AV(β,j)(ξ) = ζαβijδαβδij (B.14)

for an arbitrary operator A ∈ CNu×Nu with Nu being number of unknowns (number
of basis functions). The mapping (B.13) is characterized by the point group of struc-

ture G = {R} consisting of symmetry operations R, dimensionality g(α) = dimD(α)

of irrep α, the order of the point group g =
∑

α

(
g(α)

)2
, mapping matrix C (R) and

irreducible matrix representation D(α) =
[
d
(α)
ij

]
with D̃ =

(
D−1

)T
, see [30] and [161,

Sec. II-C] for more details. The application of (B.13) and the exact meaning of all
variables used is illustrated in an example in SectionB.C.

Throughout the paper, excitation vector V (ξ) represents an arbitrarily shaped
port (e.g., delta-gap, coaxial probe, etc.) that lies entirely in the generator of the
structure, see highlighted areas in Figure B.2, and variable ξ is used to code the
position of this port. As an example, assume that port No. 1 in Figure B.3 is a
delta-gap port represented by excitation vector V (1). Notice that it is placed in
one of the quadrants, which are the generators of the structure. Each summand
of (B.13) maps (changing orientation, position and amplitude) this port on its

symmetry positions 2, 3, 4, creating symmetry-adapted excitation vector V(α,i) (1)
for a particular species (α, i).

The first two questions from SectionB.3 can be answered by inspecting (B.13):

1. The maximum number of orthogonal states, Ns, (orthogonal with respect to
all physical operators) is equal to the number of species of the given point

group, i.e., to the number of vectors V(α,i) (ξ) generated by (B.13) for a given

set of ports in the generator of the structure, which is Ns =
∑

α g
(α). In

other words, for a given distribution of ports in the generator of the structure,
described by vector V (ξ), there exist Ns ways of how to symmetry-adapt this
vector within the given point group. Each symmetry-adaptation creates an
orthogonal excitation vector V(α,i) (ξ).

2. The minimum number of ports, Np, needed to distinguish all orthogonal states
mentioned above is equal to the number of symmetry operations in point
group G since each summand of (B.13) maps initial excitation vector V (ξ)
onto a new position and there are as many summands as symmetry operations.
See detailed example in Section B.C. It is assumed that each mapping is
unique, otherwise not all orthogonal states are reached—this possibility is
discussed later in SectionB.4.1.

Table B.3 summarizes the number of maximal reachable orthogonal states and
number of ports required for it for the known point symmetry groups.
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Table B.3: Maximum number of symmetry-based orthogonal states Ns / minimal
number of ports Np needed to excite all of them for a given point group. Selected
point groups are shown in Figure B.2. A Schoenflies notation [30] is used for point
groups naming.

n 2 3 4 5 6 7 8

Cn 2/2 3/3 4/4 5/5 6/6 7/7 8/8

Cnv 4/4 4/6 6/8 6/10 8/12 8/14 10/16

Cnh 4/4 6/6 8/8 10/10 12/12 14/14 16/16

Dn 4/4 4/6 6/8 6/10 8/12 8/14 10/16

Dnh 8/8 8/12 12/16 12/20 16/24 16/28 20/32

Dnd 6/8 8/12 10/16 12/20 14/24 16/28 18/32

Sn 2/2 4/4 6/6 8/8

T Th Td O Oh I Ih

6/12 12/24 10/24 10/24 20/48 16/60 32/120

0 10 20 30 40 50 60 70 80 90 100

Efficiency Ns/Np (%)

Table B.4: A symmetry-adapted delta gap number five from Figure B.3.

R \ α A1 A2 B1 B2

E 5+ 5+ 5+ 5+

σxz
v 5− 5+ 5− 5+

σyz
v 6+ 6− 6− 6+

Cz
2 6− 6− 6+ 6+

When combined together, the answers to Q1 and Q2 show how orthogonal states
can be efficiently established for a given point group. On the other hand, this
procedure does not ensure that all states lead to the same/optimal value of the
selected antenna metric. This calls for a reply to question Q3 which is addressed in
SectionB.5.

B.4.1 Port Placed in the Reflection Plane

Formula (B.13) suggests that a problematic design appears when the port corre-
sponding to excitation vector V (ξ) lies at the boundary of the generator of the
structure [30], e.g., at the reflection plane. In this case, the port generally breaks
the symmetry of the structure making the process of symmetry adaptation invalid.
To give an example, imagine that a delta-gap port is placed at position ξ = 5 in
Figure B.3. The reflection σxz

v and identity operation E project this port onto itself
but with different polarity. This collision is demonstrated in Table B.4. In this case,
only states belonging to irreps A2 and B2 are realizable. More than four ports would
be needed to establish four states.
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Figure B.4: The structure of the rectangular rim. Possible placements of ports ξ
in the generator of the structure are highlighted in red.

B.5 Ports’ Positioning

In order to answer the third question from SectionB.3—Where should ports be placed
to maximize the performance of a device, with respect to a given physical metric,
to maintain the orthogonality of states?—it is necessary to take into account the
particular requirements on the performance of the device. An example of investigat-
ing port positions to optimize the TARC of an antenna is used to demonstrate the
sequence of steps to resolve this question. Instead of the rectangular plate shown in
Figure B.3, a rectangular rim of dimensions 2L× L and width L/10 is considered,
see the object in Figure B.4. The geometry of the rim belongs to the same point
group as the plate but allows for the placement of discrete ports [162] at an arbitrary
position without creating undesired short circuits.

B.5.1 Total Active Reflection Coefficient

The total active reflection coefficient [157], which is defined as

t =

√
1− Prad

Pin
, (B.15)

is used as a performance metric, where Prad stands for radiated power and Pin stands
for incident power. Within the MoM framework, (B.15) can be reformulated as

t (v) =

√
1− 4Z0vHPHYHR0YPv

vHkHkv
, (B.16)

where
k = e+ Z0y. (B.17)

Here, e is the identity matrix, Z0 = 50 Ω is the characteristic impedance of all
transmission lines connected to the ports, Y = Z−1 ∈ CNu×Nu is an admittance
matrix, R0 is the radiation part of the impedance matrix, and y ∈ CNp×Np is the
admittance matrix seen by Np connected ports. Each port is represented by one

56



B.5. PORTS’ POSITIONING

column of matrix P and port voltages are all accumulated in vector v. Matrix P
is therefore of size Nu ×Np and the excitation vector is given by V = Pv, see
Appendices B.A, B.B and B.D for detailed derivations.

B.5.2 Optimization Problem

The problem of TARC minimization with additional constraints on Nm orthogonal
states is defined as to find port excitation vectors {vm}, m ∈ {1, . . . , Nm} and port
configuration P such as to fulfill

minimize
{P,vm}

tRMS

subject to vH
mPHA1Pvn = 0, m ̸= n,

... =
...

vH
mPHANkPvn = 0, m ̸= n,

(B.18)

where the root mean square (RMS) metric based on (B.16) is adopted

tRMS =

√√√√ 1

NmNf

Nm∑
m=1

Nf∑
f=1

t2 (vm, ωf ) (B.19)

to measure the overall performance over Nf frequency samples ωf and over multiple
states. Matrices Ak, k ∈ {1, . . . , Nk}, in the constraints above are placeholders for
matrix operators from, e.g., SectionB.A. These constraints enforce simultaneous
orthogonality with respect to all operators describing the physical system at hand,
e.g., with respect to far fields (Ak = YHR0Y), current densities (Ak = YHY),
excitation vectors (Ak is the identity matrix), or energy stored by the states
(Ak = YHWY).

In light of the discussion in SectionB.2, the simultaneous realization of all Nk > 2
constraints in (B.18) is only possible on symmetric structures and only when exci-

tation vectors Vm = Pvm are given by (B.13), i.e., Vm = V(α,i) = Pv(α,i). This

imposes specific requirements on port matrix P and port voltages v(α,i).
First, ports represented by columns of port matrix P have to be symmetrically

distributed on the structure. This is achieved by placing a port (a single column
of matrix P) at arbitrary position ξ in the generator of the structure and then by
replication of this port by the application of symmetry operations R ∈ G (column
of matrix P is transformed by mapping matrices C(R)). Each replication results in
a new port, i.e., new column2 of port matrix P.

Second, port excitation vector v is constructed so that only ports placed in the
region of the generator of the structure are excited (others are kept at zero voltage)
and the symmetry-adaptation (B.13) of vector V(ξ) = Pv is processed. Here and
further, ξ represents a particular position in the generator of the structure, see
possible placements in Figure B.4.

Lastly, port voltages v(α,i) for species (α, i) are acquired from excitation vec-

tor V(α,i) as

v(α,i) =
(
PHP

)−1

PHV(α,i), (B.20)

see (B.48) in SectionB.D.

2Note, that one of the symmetry operations is an identity which represents the original port
in the generator of the structure and the corresponding column of matrix P should be omitted.
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Being now equipped with symmetry-adapted excitation vectors V(α,i) = Pv(α,i),
constraints of (B.18) are automatically fulfilled irrespective of their number. The
variables remaining for optimization (B.18) are therefore positions ξ of ports in the
generator of the structure and their amplitudes. In a simplified case, when only one
port exists in the generator of the structure, its amplitude is of no relevance and the
only optimized variable is position ξ, i.e., the optimization problem (B.18) reduces
to

minimize
ξ

tRMS. (B.21)

In order to give a simple set of instructions for the procedure above, the TARC
minimization with fully orthogonal states iteratively performs:

1. Pick a position ξ.

2. Create a port matrix P, see (B.47) in SectionB.D.

3. Construct vector v exciting only the ports in the generator of the structure.

4. Perform symmetry-adaptation (B.13) of the vector V = Pv into all
species (α, i).

5. Get v(α,i) via (B.20) for each species.

6. Calculate TARC t
(
v(α,i)

)
for all species (B.16).

7. Evaluate the fitness function tRMS via (B.19).

B.5.3 Single-Frequency Analysis

The optimization of the port’s placement in the generator of the structure (B.21)
computed at the single frequency sample (Nf = 1) is analyzed in this section. The
selected frequency corresponds to the antenna’s electrical size ka = 10.19. The low
number of tested positions and the possibility to precalculate all matrix operators A
enables the use of an extensive search to evaluate (B.16) for each tested position ξ
depicted by the red color in Figure B.4.

The results are presented in Figure B.5. As mentioned in Section B.4.1, posi-
tions ξ = 1 and ξ = 15 are not able to excite all four orthogonal states since they
are placed at the reflection plane. All other positions ξ result in a total of four
symmetrically placed ports providing four orthogonal states.

Bars in Figure B.5 show TARC values (B.16) computed for each of the four
species (α, 1), α ∈ {A1,A2,B1,B2}. The values tRMS are represented by the black
vertical lines. The optimal port position ξ in the generator of the structure is
declared as the one with the lowest value of tRMS, i.e., position ξ = 14.

Radiated patterns were computed and plotted as two-dimensional cuts in Fig-
ure B.6 to confirm the orthogonality of the designed excitation vectors V(α,i) (ξ).
One can see that these patterns are similar to spherical harmonics which are orthog-
onal [43]. To reduce the complexity of radiation patterns in Figure B.6, radiation
patterns were computed at ka = 1, bearing in mind that the orthogonality between
states is frequency independent.

B.5.4 Frequency Range Analysis

Multiport antenna systems typically operate in a wide frequency range. However,
evaluating (B.21) at each frequency, as was done in the previous section, does not
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Figure B.5: TARC values of four orthogonal states (α, 1) for the rectangular rim
from Figure B.4 evaluated for different positions of port in the generator of the
structure ξ at ka = 10.19. Black lines denote RMS values tRMS. The states are
named according to irreducible representations, see Table B.4.

90◦

60◦

30◦
0◦

−30◦

−60◦

−90◦

−120◦

−150◦

180◦
150◦

120◦

0.0

0.5

1.0

1.5

2.0

90◦

60◦

30◦
0◦

−30◦

−60◦

−90◦

−120◦

−150◦

180◦
150◦

120◦

0.0

0.5

1.0

1.5

2.0

(a) Cut at θ =
π

2
(b) Cut at ϕ =

π

2

A1

A2

B1

B2

A1A2B1 B2

100% 0%

Figure B.6: Far-field cuts with polarization along direction φ̂ computed at ka = 1
for excitation vectors V(α,i) for ξ = 7. Radiation patterns are orthogonal which is
confirmed by the envelope correlation coefficient [163] depicted in the table. The
naming convention adapted for the states is the same as in Figure B.5 and in
Table B.4.

provide a unique best position ξ, see Figure B.7, where Nf = 116 frequency samples
in the range corresponding to the antenna’s electrical size ka ∈ (0.5, 12) was used.

The unique solution is accomplished by evaluating the RMS value of TARC (B.19)
over the frequency range in which the best position minimizing (B.21) is ξ = 7,
see Figure B.8. The realized TARC computed for this optimal position over the
whole frequency band is shown in Figure B.9. It can be observed that there is
no frequency where all four states radiate well, which results from their different
current distributions. However, minimizing (B.21), by counting all frequencies of
the selected band, provides a solution in which average TARC over all channels is
the best.

The values in Figure B.8 are not so different and, in fact, are unsatisfactory. This
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Figure B.7: The best position of the port in the generator of the structure ξ
with respect to TARC value tRMS evaluated at each frequency sample.
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Figure B.8: TARC values evaluated by (B.19) for different positions ξ of the
sole (Nξ = 1) feeder which was symmetry-adapted.

is caused by the wide frequency range used and by employing the connected trans-
mission lines of characteristic impedance Z0 = 50Ω, which is not an optimal value
for the chosen structure. Optimization of the impedance matching would demand
a topological change of the antenna structure (keeping the necessary symmetries)
which is beyond the scope of this paper.

B.5.5 More Ports Placed in the Generator of the Structure

The previous subsections assumed the existence of a sole port placed in the generator
of the structure which was symmetry-adapted. Nevertheless, a higher number of
ports might give better radiation properties. In the case of Nξ > 1 ports placed in
the generator of the structure, in addition to all statements in Section B.5.2, the
complex amplitudes connected to the ports also have significance.

As port excitation vector v is constructed so that only ports placed in the
generator of structure are excited (i.e., there is Nξ nonzero values) and because
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Figure B.9: TARC values of four orthogonal states (α, 1) for a rectangular rim
depicted in Figure B.4, the best position ξ = 7 is considered.

the symmetry-adaptation process (B.13) transforms these Nξ nonzero values to Np

nonzero values in vector v(α,i), the symmetry-adapted vector can also be expressed
as

v(α,i) = p(α,i)κ(α,i), (B.22)

where p ∈ RNp×Nξ is a port-indexing matrix (each column in p corresponds to one
exclusively excited port in the generator of the structure) and vector κ of size Nξ × 1
contains only voltages of ports placed in the generator of the structure.

Substituting (B.22) into (B.16) leads to

t(α,i)
(
κ(α,i)

)
=

√
1− (κ(α,i))

H
A(α,i)κ(α,i)

(κ(α,i))
H
B(α,i)κ(α,i)

, (B.23)

where

A(α,i) = 4Z0

(
YPp(α,i)

)H
R0YPp(α,i) ∈ CNξ×Nξ (B.24)

and

B(α,i) =
(
kp(α,i)

)H
kp(α,i) ∈ CNξ×Nξ . (B.25)

In order to minimize (B.23), a generalized eigenvalue problem

A(α,i)κ(α,i)
p = λ(α,i)

p B(α,i)κ(α,i)
p (B.26)

is solved and an eigenvector minimizing (B.23), i.e., one corresponding to the highest

eigenvalue λ
(α,i)
p , is chosen. This solution provides the best achievable TARC for a

given species (α, i), the value of which is

t
(α,i)
bound =

√
1−max

(
λ
(α,i)
p

)
. (B.27)

In the case of more ports placed in the generator of the structure, the process
described in this section must be used in every step of optimization (B.21), i.e.,

vectors κ(α,i) must be evaluated for each choice of ξ.
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Table B.5: The best values of RMS of TARC for various excitation strategies on
a rectangular rim depicted in Figure B.4.

Solution Nξ {ξp} Np tRMS

Best 1 1 14 4 0.608
Best 2 2 10, 11 8 0.400
Best 3 3 11, 12, 13 12 0.317

Table B.2, column 2 3 1, 10, 15 8 0.587
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Figure B.10: Voltage amplitudes κ(α,1) for a configuration with a combination
of Nξ = 2 positions at ξ ∈ {12, 14}. The voltage impressed to the port at
position ξ = 12 is normalized to one volt.

B.5.6 Analysis with More Ports in the Generator of the Structure

The optimal placement of two and three ports, Nξ = {2, 3}, in the generator of
the structure is studied in this section. The same metallic rim as in SectionB.5.3
operating at ka = 10.19 is used and the method from SectionB.5.5 is applied, see
Table B.5 for the results. It can be observed that the involvement of more ports
significantly decreases the RMS of TARC across the states. This is because the
optimal current density reaching minimal TARC is better approximated with more
excitation ports.

Table B.5 shows results for a port configuration adopted from [83] which was
discussed in SectionB.3. This configuration uses Nξ = 3 ports placed in the generator
of the structure and Np = 8 ports. Nevertheless, Table B.5 reveals that better
results may be obtained when the symmetry-adapted basis described in this paper
is utilized.

The frequency range analysis from Section B.5.4 was repeated for the combi-
nation of Nξ = 2 ports placed in the generator of the structure. Ports at posi-
tions ξ ∈ {12, 14} provide the lowest RMS (B.19) tRMS = 0.605. However, the
solution with a combination of more positions {ξk} requires optimized port voltage
amplitudes κ (B.22) which vary over frequency, see Figure B.10. Figure B.11 shows
realized TARC values reached by this configuration. The radiation efficiency is
significantly improved as compared to the previous solution shown in Figure B.9.
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Figure B.11: TARC values of four orthogonal states (α, 1) for the rectangular
rim depicted in Figure B.4 and a combination of Nξ = 2 positions at ξ ∈ {12, 14}.

B.6 Conclusion

The presence of symmetries was utilized via point group theory to describe a
procedure that determines where to place ports on an antenna to achieve orthogonal
states with respect to any radiation metric, such as radiation and total efficiency,
antenna gain, or Q-factor.

The methodology can play an essential role in the design of MIMO antennas
when a few ports can orthogonalize several states (e.g., four ports on a rectangular
structure generate four orthogonal states, eight ports on a square structure generate
six orthogonal states, etc.). The maximal number of orthogonal states and the
minimal number of ports needed to excite all of them is determined only from the
knowledge of the point group to which the given geometry belongs. Due to the
symmetries, the procedure of ports’ placement can be accelerated by the reduction
of the section where the port placed in the region of the generator of the structure
can be placed and subsequently “symmetry-adapted” to the proper positions at the
entire structure. It was also demonstrated that port positions intersecting reflection
planes should not be used since they do not allow the excitation of all states.

A proper placement of ports was illustrated by an example—with a single
frequency and frequency range analysis—featuring a simultaneous minimization of
total active reflection coefficient across the realized orthogonal states. Leaving aside
the final matching optimization, it has been clearly presented how symmetries can
be utilized in the design of a multi-port antenna.

B.A Matrix Operators

Many antenna metrics are expressible as quadratic forms over time-harmonic current
density J(r), [61, 158], which is represented in a suitable basis {ψn(r)} as

J (r) ≈
Nu∑
n=1

Inψn (r) (B.28)
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with Nu being the number of basis functions. The metric p is then given as

p = ⟨J ,AJ⟩ ≈ IH [⟨ψm(r),Aψm(r)⟩] I = IHAI. (B.29)

For example, the complex power balance [164] for radiator Ω made of a good
conductor reads

Prad + PL + 2jω (Wm −We) ≈ 1

2
IH (Z0 +Rρ) I, (B.30)

where the vacuum impedance matrix Z0 = R0 + jX0 is defined element-wise as

Z0,mn = −jωµ0

∫
Ω

∫
Ω

ψm (r) ·G
(
r, r′

)
·ψn

(
r′
)
dS dS′, (B.31)

with ω being angular frequency, µ0 being vacuum permeability, and G being free-
space dyadic Green’s function [165]. Ohmic losses PL are represented via matrix Rρ

which, under thin-sheet approximation [166], is defined element-wise as [61]

Rρ,mn =

∫
Ω

ρ (r)ψm(r) ·ψn(r) dS, (B.32)

where ρ is surface resistivity [166]. Another notable operator [167, 168]

W = ω
∂X0

∂ω
(B.33)

gives energy stored in the near-field on a device, thus determining the bandwidth
potential of a radiator [169].

B.B Excitation Vector

The excitation of obstacle Ω is realized by an incident electric field intensity Ei (r)
represented element-wise in a basis (B.28) as

Vn =

∫
Ω

ψn (r) ·Ei (r) dS, (B.34)

with V = [Vn] called the excitation vector. Incident field Ei (r) can be non-zero
everywhere (then the vector V generally contains non-zero entries everywhere, e.g.,
a plane wave), or in a limited region only (then vector V is sparse, e.g., a delta-gap
generator or a coaxial probe).

Considering electric field integral equation [28] in algebraic representation (B.28),
current solution I to a problem of given excitation V reads

ZI = V, (B.35)

where Z = Z0 +Rρ is the system (impedance) matrix.
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Figure B.12: (a) Five basis functions and their orientation on a star structure.

(b) An excitation vector V(1) = [1, 0, 0, 0, 0]T was symmetry-adapted by (B.13) to
four irreps: (c) α = A1, (d) α = A2, (e) α = B1, (f) α = B2.

B.C Symmetry-Adaptation of a Vector

The process of symmetry-adaptation of a vector (B.13) is illustrated and explained
in the example of a simple structure consisting of five RWG [51] basis functions, see
Figure B.12a. The delta-gap ports are connected directly to the basis functions, i.e.,
ports’ positions ξ are identical to the numbering of basis functions. This structure
belongs to the same point group C2v as the rectangular plate introduced in SectionB.3
and is thus invariant to the same four symmetry operations: identity (E), rotation
by π around z axis (Cz

2) and two reflections by xz and yz planes (σxz
v , σyz

v ). The point

group C2v consists of four irreps α ∈ {A1,A2,B1,B2}, with dimensionality g(α) = 1
for each irrep α.

Mapping matrix C (R), for each symmetry operation R, is constructed so as
to interlink pairs of basis functions which are mapped onto each other (respecting
their orientation) via a given symmetry operation. Mapping matrices for the star
structure from Figure B.12a read

C (E) = diag ([+1,+1,+1,+1,+1]) , (B.36)

C (Cz
2) =


0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 0 0
−1 0 0 0 0

 , (B.37)
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Table B.6: Character table for point group C2v [30], a rectangular plate and the
star structure belong to.

C2v E Cz
2 σxz

v σyz
v

A1 +1 +1 +1 +1
A2 +1 +1 −1 −1
B1 +1 −1 +1 −1
B2 +1 −1 −1 +1

C (σxz
v ) =


0 0 0 +1 0
0 0 0 0 +1
0 0 −1 0 0
+1 0 0 0 0
0 +1 0 0 0

 , (B.38)

C (σyz
v ) =


0 −1 0 0 0
−1 0 0 0 0
0 0 +1 0 0
0 0 0 0 −1
0 0 0 −1 0

 . (B.39)

A general framework of how to obtain irreducible matrix representations D(α) (R)
is described in [161, Sec. II.B]. However, for one-dimensional irreps, the ma-

trices D(α) (R) can be obtained directly from the character table, see the char-
acter table for the C2v point group in Table B.6. These character tables are
known [30] and unique for all point groups. For each irrep α (row) and each sym-
metry operation (column) the entry in the character table, called “a character”,

is χ(α) (R) = trace
(
D(α) (R)

)
. Since the dimensionality of all irreps of the point

group C2v is one (g(α) = 1 for each irrep α), values in the character table are equal

to the irreducible matrix representations D(α) (R) (matrices of size 1× 1).
The position of the initial port ξ can be freely chosen within the generator

of the structure. Let us pick the position at ξ = 1 and construct an excitation
vector V(1) = [1, 0, 0, 0, 0]T, see Figure B.12b.

Once matrices C (R) and D(α) (R) are known, a symmetry-adaptation of the
excitation vector V(1) into a given species (α, i) can be processed. The equation
(B.13) can be read as: An initial port recorded in V (ξ) is mapped onto its “doublet”
under symmetry operation R via mapping matrix C (R) while multiplying by a

proper value from matrix D(α) (R) (in this case only values ±1) adds and provides

a orthogonality property to the final symmetry-adapted vector V(α,i):

V(A1,1) = [+1,−1, 0,+1,−1]T , (B.40)

V(A2,1) = [+1,+1, 0,−1,−1]T , (B.41)

V(B1,1) = [+1,+1, 0,+1,+1]T , (B.42)

V(B2,1) = [+1,−1, 0,−1,+1]T . (B.43)

These solutions are shown in Figures B.12c–f. The normalization g(α)/g = 1/4 is
intentionally omitted for each of solutions.

66



B.D. TOTAL ACTIVE REFLECTION COEFFICIENT

B.D Total Active Reflection Coefficient

In order to derive (B.16), incident power Pin is written using incident power
waves a ∈ CP×1 at antenna ports [170] as

Pin =
1

2
aHa (B.44)

and the radiated power is written as [28]

Prad =
1

2
IHR0I, (B.45)

where R0 ∈ RNu×Nu is a radiation part of impedance matrix Z ∈ CNu×Nu

and I ∈ CNu×1 is a vector of expansion coefficients within the MoM solution
to the electric field integral equation (EFIE) [28], see SectionB.A. Using (B.35) it
holds that

Prad =
1

2
VHYHR0YV. (B.46)

Assume an antenna fed by ports connected to transmission lines of real char-
acteristic impedance Z0. Within the MoM paradigm [28], the excitation vector
is

V = Pv, (B.47)

where v are port voltages and matrix P ∈ RNu×Np is a matrix the columns of which
are the representations of separate ports. Notice that

v =
(
PHP

)−1

PHV. (B.48)

The incident power waves can be expressed as [170]

a =
1

2
√
Z0

(e+ Z0y)v, (B.49)

where e is an identity matrix and y is the admittance matrix [170] for port-like
quantities.

Substituting (B.46), (B.47) and (B.49) into (B.15) results in (B.16). More details
about TARC for multi-port lossy antennas can be found in [109].
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Abstract—A numerically effective description of the total active reflection
coefficient and realized gain are studied for multi-port antennas. Material losses
are fully considered. The description is based on operators represented in an
entire-domain port-mode basis, i.e., on matrices with favorably small dimensions.
Optimal performance is investigated and conditions on optimal excitation and
matching are derived. The solution to the combinatorial problem of optimal ports’
placement and optimal feeding synthesis is also accomplished. Four examples
of various complexity are numerically studied, demonstrating the advantages of
the proposed method. The final formulas can easily be implemented in existing
electromagnetic simulators using integral equation solver.

Index terms: Antenna theory, MIMO, electromagnetic modeling, method of
moments, eigenvalues and eigenfunctions, optimization.

C.1 Introduction

With increasing interest in multi-port and multiple-input multiple-output (MIMO)
systems, see, e.g., [132, 133, 137, 171–173], a new set of figure of merits were needed
to judge their performance. Among the few available choices, the total active
reflection coefficient (TARC) [157, 174, 175] became widely used, due mainly to
its straightforward definition and experimental accessibility. Considering a given
excitation, it reads “the square root of the available power generated by all excitations
minus radiated power, divided by available power” [157].

The TARC was successfully utilized for practical antenna design, covering wide
range of MIMO applications [176–179]. Improvement of large-scale end-fire antenna
arrays matching with simultaneous pattern synthesis was achieved via convex opti-
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mization in [180]. The optimal performance on TARC in a loss-less scenario using
scattering matrix was studied in [133].

Numerical evaluations of TARC typically neglect ohmic losses (relating TARC
to matching efficiency only), assuming that vanishing TARC implies the acceptance
of all incident power by the antenna and radiation of it into far field [181]. This
assumption is, nevertheless, not true when ohmic losses are present and it may be a
source of significant discrepancies between simulation and measurement [182]. In
order to remedy this issue and provide simple, yet precise TARC evaluation, a new
formulation has been devised in this paper (relating TARC to the total efficiency).
Unlike other procedures relying on equivalent circuits [175, 182], the presented
approach is of full-wave nature, i.e., there are many discrete ports which can be
freely distributed across arbitrarily shaped scatterer, optionally made of lossy and
inhomogennous material. Another notable feature is that characteristic impedance
can be separately prescribed for each port.

The presented derivations make use of port modes [28, 159], which compress the
large algebraic system (typically thousands times thousands) describing the antenna
into port-related matrix operators of rank given by the number of ports (typically
not more than tens by tens). Due to this property, the evaluation of antenna metrics
is numerically inexpensive and allows for optimal design. Particularly, assuming
a given shape, materials, operational frequency, number of ports and matching
topology, this manuscript introduces methodology, how to determine where the
ports have to be placed, what is the best combination of excitation voltages and
what are the optimal matching impedances to reach the best attainable values of
TARC and realized gain. The understanding provided by the method also updates
the knowledge about optimal excitation of antenna arrays [135, 159, 183–185].

This paper is structured as follows. TARC is briefly reviewed and expressed
in operator form in Section C.2, and reformulated in port modes in Section C.3.
The fundamental bounds on TARC performance are derived in Section C.4. To
demonstrate the usefulness of the novel formula and its capability of determining
optimal performance of a multi-port antenna, the optimal placement of feeding
ports is shown in SectionC.5 and optimal characteristic impedances are found in
SectionC.6. The realized gain and its fundamental bound are treated in SectionC.7.
The paper is concluded in SectionC.8. All relevant sections are accompanied with
numerical examples demonstrating flexibility of the method.

C.2 TARC: Full-Wave Algebraic Formulation

Considering a multi-port antenna as depicted in Figure C.1, the total active reflection
coefficient (TARC) is defined as [157]

Γt =

√
1− Prad

Pin
, (C.1)

where Prad is the power radiated by the antenna and Pin is the incident (available)
power. The incident power is most easily evaluated as

Pin =
1

2
aHa, (C.2)

where a ∈ CP×1 is a vector of incident power waves [170] with P being the number
of ports and superscript H denoting the Hermitian conjugate.
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Port-like quantities MoM-like quantities

BL,1 v1R0,1

a1

b1

BL,P vPR0,P

aP

bP

Antenna

Ω

Figure C.1: Multi-port antenna system, consisting of scatterer Ω and P ports
connected to transmission lines of characteristic impedance R0,p. All ports might
optionally be tuned by a lumped susceptance BL,p. The variable connecting
circuitry on the left and the full-wave model on the right are port voltages
accumulated in vector v.

In the case of a loss-less antenna, the radiated power can be evaluated as

Prad =
1

2

(
aHa− bHb

)
, (C.3)

where b ∈ CP×1 is the vector of reflected power waves. For a lossy antenna, this is
no longer valid. In a general case, the radiated power must be evaluated as [28]

Prad =
1

2
IHRΩI, (C.4)

where RΩ ∈ RN×N is the radiation part of the impedance matrix [28]

Z = RΩ +Rρ + jXΩ , (C.5)

and I ∈ CN×1 is a vector of expansion coefficients within a method of moments (MoM)
solution [28] to surface current density

J (r) ≈
N∑

n=1

Inψn (r) (C.6)

with {ψn} being a properly chosen set of basis functions [37]. The power dissipated
in ohmic losses1 is correspondingly evaluated as

Plost =
1

2
IHRρI, (C.7)

1If volumetric method of moments is used, matrix Xρ would have to be added to (C.5) to
account for the presence of dielectric bodies. The rest of the formulation remains untouched.
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where matrix Rρ ∈ RN×N is calculated for a surface resistivity model as described
in [61, App. C]. The procedure of how to evaluate current I with connected lumped
susceptances {BL,p} is described in the following section.

The substitution of (C.2) and (C.4) into (C.1) is, in principle, enough to evaluate
TARC, nevertheless, such a prescription is unpleasant when mixing port-based
(a, b) and MoM-based (I) quantities. This form, as an example, does not allow for
evaluating optimal performance [61, 107, 158], which will be derived later. In order
to overcome this difficulty, the TARC formula will now be recast into a form which
solely contains port quantities.

C.3 Expression of TARC in Port Quantities

In order to rewrite TARC in terms of port-related quantities, i.e., matrices and
vectors of size P , the excitation vector V and current vector I must be related to
port voltages v and port currents i.

In the first step, excitation vector V from the MoM description of the antenna

I = YV, (C.8)

with Y = Z−1 ∈ CN×N being admittance matrix, is related to port volt-
ages v ∈ CP×1 via

V = DCv, (C.9)

where port positions are defined by an indexing matrix C ∈ {0, 1}N×P ,

Cnp =

{
1 p-th port is placed at n-th position,
0 otherwise,

(C.10)

i.e., CHC = 1 ∈ RP×P . Since the basis functions (C.5) may or may not have
dimensions, diagonal normalization matrix D ∈ RN×N is defined elementwise as

Dnn = ξn (C.11)

to ensure that the port-based quantities such as impedances, voltages and currents
have dimensions of Ohms, Volts and Amperes. For example, for dimensionless basis
functions, such as Rao-Wilton-Glisson (RWG) [51], the normalization variable would
typically be the basis function’s edge length ln, i.e., ξn = ln. Analogously to the
port voltage v, port current i is defined via

i = CHDHI. (C.12)

Substituting (C.8) and, subsequently, (C.9) into (C.12) gives port admittance
matrix y

i = yv, (C.13)

where
y = CHDHYDC. (C.14)

Note that complex power [116] is strictly conserved between port-like and MoM-like
quantities, i.e., iHv = IHV.
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The next step is the evaluation of the radiated power (C.4) using port voltages.
This can be done thanks to the relation

IHMI = vHnv, (C.15)

with
n = CHDHYHMYDC, (C.16)

which is valid for any matrix M and results from substituting (C.8) and (C.9) into
the left-hand side of (C.15). A particularly important example of this relation is
the substitution M = RΩ which gives rise to relation

Prad =
1

2
IHRΩI =

1

2
vHgΩv, (C.17)

with gΩ = CHDHYHRΩYDC and analogously for ohmic losses to

Plost =
1

2
IHRρI =

1

2
vHgρv. (C.18)

The last step is the connection of power waves a,b, which exist in lossless
feeding transmission lines of characteristic impedance R0,p, see Figure C.1, with
port voltages, i.e.,

a =
1

2

(
Λ−1v +Λi

)
=

1

2
(1+Λ (y + yL)Λ)Λ−1v = kiv, (C.19)

b =
1

2

(
Λ−1v −Λi

)
=

1

2
(1−Λ (y + yL)Λ)Λ−1v = krv, (C.20)

where [170]

Λpp =
√
R0,p (C.21)

and where admittances jBL,p were accumulated at the diagonal of matrix yL.
The final expression for TARC used throughout this paper reads

Γt =

√
1− vHgΩv

vHkH
i kiv

=

√
1− aHk−H

i gΩk−1
i a

aHa
. (C.22)

The formulas (C.17), (C.18), and (C.22) can, in principle, be evaluated in con-
temporary electromagnetic simulators as well. Nevertheless, the port-mode matrix
formulation (C.16) seems to not be implemented yet. For this reason, the ohmic
losses extraction is conventionally done via far field integration which is a time-
consuming task. The procedure (C.16) is not only computationally more efficient
but also more general. Any quantity based on matrix operator, e.g., stored energy
matrix [107], can be transformed. In this last case, only integration of near field, a
computationally challenging operation, can circumvent the usage of (C.16).

C.3.1 Example: Evaluation of TARC (Single-port Antenna)

Let us start with a simple single-port radiator, a thin-strip dipole made of copper
(σCu = 5.96 ·107 Sm−1) with length ℓ and width ℓ/100. The frequency range used for
the study is ka ∈ [1/2, 10], where k is the wavenumber in vacuum and a is a radius
of the smallest sphere circumscribing the antenna. TARC is evaluated with the
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Figure C.2: TARC for a thin-strip dipole of length ℓ and width ℓ/100. Various
characteristic impedances R0,1 and surface resistivities were used. The dashed
lines present the cases of the optimal delta gap placement at each frequency ka.
The solid curves assume the delta gap in the geometrical center of the dipole.

delta-gap feeding [162] covering the entire width of the dipole. All the operators were
evaluated in Antenna Toolbox for MATLAB (AToM) [29] which utilizes RWG basis
functions [51]. Two distinct values of transmission line characteristic impedance
are studied, R0,1 = 71.2Ω (the input impedance of the dipole at its first resonance)
and R0,1 = 25Ω, see Figure C.2. There are no tuning lumped elements, yL = 0.
Since the dipole is a single-port antenna, the specific excitation voltage plays no role
in the evaluation of (C.22) and can be freely set to v1 = 1V. This makes it possible
to effectively find an optimal placement of the port along the dipole depending on
the electrical size ka. Matrices gΩ and ki, corresponding to a port at n-th edge, are
denoted as gΩ,n and ki,n (they are scalars in this single-port case). Consequently,
the minimal TARC, with respect to the optimal placement of the port, can be found
via elementwise division

min
n

{
Γt
n

}
= max

n

{
gΩ,n

|ki,n|2
}

(C.23)

for all tested positions. The position for minimum TARC is shown in Figure C.3
with the corresponding TARC shown in Figure C.2.

The last study reveals that the dipole antenna is relatively immune to ohmic
losses since the reduction of the conductivity by four orders in magnitude causes
only a mild drop in performance. It is worth noting that, as far as the ohmic
losses are negligible, TARC can be zeroed by a proper choice of tuning susceptance
and characteristic resistance. This possibility is studied later on in SectionC.6 for
multi-port antennas.
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Figure C.3: Optimal placement of a delta-gap feeder along the thin-strip dipole
made of copper. The placement is shown in relative length |l|/ℓ from the middle
of the dipole. The vertical scale represents the position of the basis function to be
fed at each electrical size ka. The corresponding TARC is depicted by the black
dashed line in Figure C.2.
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Figure C.4: A metallic rim with parasitic ground plane with four possible ports,
denoted Pp, p ∈ {1, . . . , 4}. Both the rim and the ground plane are made of copper.
The ports are placed at a distance of ℓ/5 from the ends of the longer side.

C.3.2 Example: Evaluation of TARC (Multi-port Antenna)

The second example, to be studied in the rest of the paper, is a four-port
metallic rim placed above a ground plane, both of which are made of copper
(σCu = 5.96 · 107 Sm−1), see Figure C.4. The dimensions of the structure are:
length ℓ = 150mm, width ℓ/2, height of the strip 3ℓ/200, and the elevation of the
rim above the ground plane 3ℓ/200. The rim is discretized by a uniform mesh grid
consisting of 450 basis functions. The ground plane is discretized by a Delaunay
triangulation [117] with 798 basis functions, i.e., the total number of degrees of
freedom is N = 1248. Notice here that the example serves mainly as a demonstration
of a new designing framework for the effective evaluation and optimization of TARC.
We have no intention of designing and optimizing a realistic system.
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Figure C.5: TARC for the metallic rim with parasitic ground plane, depicted in
Figure C.4. The characteristic impedance 50Ω and 10Ω were used for all enabled
ports. Four various combination of ports with unit voltage excitation were studied.

We start the investigation with the fixed placement of the ports, denoted
as Pp, p ∈ {1, . . . , 4}, see Figure C.4, and with unit excitation vp = 1V at all
ports (the impressed electric field intensity points in y direction for all ports) and
with equal characteristic impedances R0,p.

TARC for two different impedances R0,p and a varying number of uniformly
excited ports is depicted in Figure C.5. No lumped susceptances were used for
simplicity, BL,p = 0. Some observations may already be made. In general, utilizing
more ports does not automatically result in a lower value of TARC. Considering
the fixed body of an antenna, optimal TARC is a complicated function of the char-
acteristic impedances, matching, excitation, and ports’ placement. The optimality
of TARC with respect to all these parameters is studied in the following sections.

C.4 Optimal Excitation for Minimum TARC

Let us first consider that characteristic impedances R0,p and matching suscep-
tances BL,p are fixed. In such scenario, TARC (C.22) is, for a fixed geometry,
solely a function of voltage vector v and its minimization takes the form of the
maximization of the total efficiency ηtot since

ηtot = ηradηmatch = 1−
(
Γt)2 =

vHgΩv

vHkH
i kiv

, (C.24)

where the radiation and matching efficiencies are defined as [164]

ηrad =
Prad

Prad + Plost
, (C.25)

and

ηmatch =
Prad + Plost

Pin
. (C.26)
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P2

Figure C.6: Current density (absolute value) of a port-mode excited at 500MHz
by a unit voltage impressed at port P2. For the set of ports depicted in Figure C.4,
the excitation scheme reads v = [0 1 0 0]H.

Rigorously, the optimization problem for the maximal total efficiency (minimum
TARC) reads

maximize vHgΩv

subject to vHkH
i kiv = 1,

(C.27)

which is a quadratically constrained quadratic program [106] solved by taking the
largest eigenvalue η1

max
v

{ηtot} = min
v

{
Γt} = max

i
{ηi} = η1 (C.28)

of the generalized eigenvalue problem

gΩvi = ηik
H
i kivi. (C.29)

Eigenvector v1, corresponding to the largest eigenvalue, represents the optimal
terminal voltages. The optimal vector of incident power waves can be evaluated
from the optimal port voltage as a1 = kiv1, see (C.19).

Optimal vector v1 attains an interesting interpretation when relations (C.8),
(C.9) are combined into

I = YDCv =
∑
p

Ipvp, (C.30)

where Ip = YpDp denotes that the normalized column of matrix Y connected to
the pth port, the so-called “port mode” [159]. Within the full-wave solution to the
antenna problem, optimal port voltages v1 thus excite a specific combination of port
modes. An example of a port mode excited by port P2 is depicted in Figure C.6.

C.4.1 Example: Optimal Excitation of Multi-port Antenna

Continuing with the example of the rim above a ground plane from SectionC.3.2,
the optimal excitation voltages for 4, 3, and 2 ports with R0,p = 50Ω and 3 ports
with R0,p = 10Ω are evaluated using (C.29), see Figure C.7. The ports have the
same configuration as in Figure C.5. For the sake of convenience, corresponding
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Figure C.7: Comparison of TARC for optimal excitation (solid lines) and uniform
excitation (dashed lines). The characteristic impedance R0,p = 50Ω was used for
4, 3, and 2 ports enabled, and R0,p = 10Ω for 3 ports. The configuration of ports
is shown in the inset.
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Figure C.8: Comparison of radiation efficiency for optimal excitation (solid lines)
and uniform excitation (dashed lines). The setting is identical as in Figure C.7.

results for unit voltages from Figure C.5 are directly included as dashed lines to
evaluate the effect of optimal excitation. Radiation efficiency ηrad, defined in (C.25),
is depicted in Figure C.8 for the same setup. The radiation efficiency for uniform
excitation is depicted by dashed marked lines.

It is seen that there is no improvement in TARC and radiation efficiency for
four and two ports in the frequency range between 600MHz and 770MHz. This
is a property of a specific placement of ports, which is very close to a point-
symmetric configuration. If the symmetry was perfect, the solution to the eigenvalue
problem (C.29) would belong to one of the irreducible representations (irrep) [72].
The dominant solution in this frequency would belong to the irrep with unit voltages.
The irrep is changed around 770MHz and non-uniform excitation found via (C.29)
improves the performance. This is most visible for radiation efficiency with 4 ports
connected (blue lines, Figure C.8). The corresponding optimal voltages and switch
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Figure C.9: Optimal excitation for configurations from Figures C.7 and C.8.

of irrep [161] is depicted in the top pane of Figure C.9 which shows the optimal
voltages for all the discussed scenarios.

Considering different characteristic impedances R0,p, the lower value R0,p = 10Ω
leads to significantly better performance which is expected as the radiation resis-
tance of the antenna is low. This observation addresses the question of optimal
characteristic impedance. Figure C.10 shows TARC for all four configuration of
ports, both for unit (dashed) and optimal (solid) excitation depending on the value
of characteristic impedance R0,p for frequency f = 676MHz (highlighted by vertical
dashed line in Figures C.7 and C.8). The best performance is found for four ports
with R0,p ≈ 5Ω (blue line), i.e., for relatively low characteristic impedance. A
slightly higher TARC is realizable with only three ports and R0,p ≈ 10Ω (red line).
The latter option represents a practical and more appealing choice.

Thanks to the symmetrical arrangement for 2 and 4 port setups, the values
of TARC for unit and optimal excitation coincide, which once again shows that
the optimal excitation belongs to the irrep. with an in-phase constant eigenvector,
i.e., all delta gaps have the same amplitude at f = 676MHz, see Figure C.9,
the top and second from the top panes. This observation underlines the need
for further understanding of group theory and its role in solutions of integral
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Figure C.10: Comparison of TARC for optimal excitation (solid lines) and
uniform excitation (dashed marked lines) depending on the value of characteristic
impedance R0,p. TARC is evaluated at frequency f = 676MHz.

equations [72, 161, 186].

It is seen that the fixed placement of ports specified by the designer significantly
affects the overall performance of the antenna. Therefore, the next step is to
investigate the optimal placement of the ports with simultaneous determination of
their optimal excitation.

C.5 Synthesis of Optimal Feeding Placement

The maximal total efficiency (minimal TARC) given by the solution to (C.29) is a
function of number P and position C of the ports, terminal impedances R0,p and
tuning reatances jBL,p. Considering a fixed number of ports P , constant terminal
impedance R0,p = R0, and a given tuning susceptance jBL,p = jBL for all ports, the
only remaining variable is the optimal placement of the ports. This task is a feeding
synthesis, defined as

maximize η1

subject to trace
(
CTC

)
= P,

(C.31)

which is a combinatorial optimization problem solved by an exhaustive search
(feasible only for small, though realistic, number of potential positions) or advanced
optimization tools [187]. The number of combinations is

C (N,P ) ≡
(
N

P

)
=

N !

(N − P )!P !
, (C.32)

where, in practice, P is a small number, and N being the number of potential
positions to be tested. In order to truncate the solution space, only subregions with
preferred positions of the ports might be specified (see the example below).
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Figure C.11: The same metallic rim and parasitic ground plane as in Figure C.4
with the regions for optimal ports’ placement (red color). It is assumed that there
is one or no port in each region, which always consists of 11 possible positions.

From the computational point of view, the matrices

ĜΩ = DHYHRΩYD (C.33)

K̂i =
1

2
√
R0

(
1+R0D

HYD
)

(C.34)

can be precalculated at the beginning of the optimization procedure leaving only
computationally cheap indexing operations

gΩ = CHĜΩC (C.35)

ki = CHK̂iC (C.36)

and dominant eigenvalue evaluation in (C.29) to be performed for every combination.

C.5.1 Example: Optimal Placement of Feeding Ports

The optimal placement of ports is investigated for a rim with the ground plane
introduced in the previous sections. In order to imagine how complex the problem
of the feeding synthesis is, assume first that all positions on the rim are suitable
for accommodating delta gap feeding. The number of combinations is, in this
case, 290 ∼ 1.24 · 1027. Such an enormous number of combinations is reduced
to 244 ∼ 1.76 · 1014 by assuming only subregions, as depicted in Figure C.11.
The number of subregions for port placement is set to four, and it is assumed that in
each subregion, denoted as Ωi, i ∈ {1, . . . , 4}, contains not more than one port (no
port is also an available option). With these restrictions, the number of solutions
drops to 20735. As a final reduction step, only unique arrangements are kept2. This
leads to only 5291 combinations which have to be investigated.

2There are combinations which represent the same arrangement of ports, only mirrored or
rotated. This is a consequence of the symmetry of the rim, which belongs to the C2v group [30].
These identical solutions can be found and truncated by application of symmetry operations
which define a given group.

81



APPENDIX C. FINDING OPTIMAL TOTAL ACTIVE REFLECTION
COEFFICIENT AND REALIZED GAIN FOR MULTI-PORT LOSSY ANTENNAS

1 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

0.517

0.306
0.241

Γt(ηub
rad) = 0.199

Realizations (sorted with ascending Γt)

Γ
t

v = 1
vopt, R0 = 50Ω, BL = 0S
b = 0
b = 0 & simplex method
ηub
rad (rad. eff. bound, rim)

Figure C.12: Results of the feeding synthesis (solution to combinatorial opti-
mization problem) for various approaches of TARC minimization. The meaning of
all curves is explained in detail in the text of SectionC.5.1. The best realization for
each curve is shown in Figure C.13 and highlighted by the marker. Other markers
of the same shape show what is the performance of that combination of ports
if another approach is utilized. For example, the best solution for the red curve
performs relatively poorly for evaluations corresponding to the green and black
curves. The dashed line indicates the fundamental bound on radiation efficiency
(perfect matching is assumed), see SectionC.A.
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Figure C.13: An overview of the optimal placement of the ports and their
performance in TARC and radiation efficiency. Various approaches found in
this paper are utilized. The optimal placement defined in (C.31) was found
via an exhaustive search for all four cases: (a) uniform excitation, v = 1, (b)
optimum excitation v1 solved by (C.29), fixed value of R0,p and BL,p, (c) optimum
excitation vi, R0,p, and BL,i for b = 0 solved by (C.39), (d) subsequent simplex
optimization of (C.29) after solving (C.39). The solutions (a)–(d) correspond to
the best realizations in Figure C.12 on the very left.
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Figure C.14: Current density (absolute value) associated with the funda-
mental bound on radiation efficiency at frequency f = 676MHz for copper
cladding, σ = σCu, under the condition that only the current on the rim is
controllable, see SectionC.A for its evaluation. It is obvious that the placement
of the ports from Figure C.13d correlates well with the maxima of the optimal
current density.

Various approaches presented in this paper were applied to evaluate and optimize
TARC for each aforementioned combination, see Figure C.12. The first approach is
an application of unit voltages on all ports within the selected combination which is
represented by the blue line in Figure C.12. It is seen that the overall performance in
TARC is poor and the best combination, depicted in Figure C.13a, reaches Γt = 0.517.
A modest improvement is realized by solving (C.29) for R0,p = 50Ω and BL,p = 0S
which results in the realization depicted in Figure C.13b reaching Γt = 0.308, see the
red line in Figure C.12. The utilization of optimal feeding improves the performance,
however, a further decrease in TARC is limited by the proper choice of circuit
components. This is also indicated by an evaluation of the upper bound on radiation
efficiency if the currents located on the rim are fully controllable and no tuning
circuitry is involved, see SectionC.A. The value of the upper bound at f = 676MHz
is ηuprad = 0.96. Assuming perfect matching, ηmatch = 1, the corresponding TARC
would be Γt = 0.199, as indicated by the dashed black line in Figure C.12. The
optimal current is depicted in Figure C.14 and the location of the current maxima
justifies the choice for regions where the ports might be located, cf. Figure C.11.
The next step, represented by the remaining curves, is to optimize the characteristic
impedance of connected transmission lines and tuning susceptance.

C.6 Optimal Characteristic and Tuning Impedances for
Minimum TARC

For lossless antennas, the condition of perfect matching reads

Γt = 0 ⇒ b = 0 (C.37)

which, after substitution from (C.20), gives

(y + yL)v = (ΛΛ)−1 v. (C.38)
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For a given excitation vector v it is, therefore, always possible to find appropriate
characteristic impedances and tuning susceptances to achieve perfect matching. Such
solution might, however, lead to non-physical elements such as negative real part of
characteristic impedance and furthermore assumes that all transmission lines are
allowed to have different impedances. A more realistic scenario assumes that charac-
teristic impedances of connected transmission lines are all identical (ΛΛ)−1 = R−1

0L 1
and so are the tuning admittances yL = jBL1. Then the relation (C.38) becomes
an eigenvalue problem

yvi =
(
R−1

0L,i − jBL,i

)
vi. (C.39)

with P solutions distinguished by index i. The real part of the eigenvalues gives
the reciprocal characteristic impedances (strictly positive), while the imaginary part
gives the tuning susceptances which, together, constitute the generalization of the
matching condition for a single-port antenna [164]. It can be checked that for a
single-port antenna the 1× 1 eigenvalue problem immediately gives BL,1 = −Bin

and R0,1 = 1/Gin, where Yin = Gin + jBin = y is the input impedance of an antenna.
Considering no, or negligible, ohmic losses, combining (C.38) with iteratively

solved (C.31) delivers optimal port placement, optimal voltage excitation, optimal
sets of tuning susceptances and characteristic resistances. The only remaining
task is to select, from all the available combinations of the ports’ placement, the
configuration which best fits the manufacturing and matching constraints. If none
of the combinations is acceptable, the only other possibility is to change the shape
of the antenna.

C.6.1 Example: Optimal Matching

The procedure from the previous section is utilized to further optimize TARC
performance of the metallic rim. The formula (C.39) is evaluated for all combinations
of ports introduced in SectionC.5.1. For all solutions found, the optimal excitation
and circuit parameters were used to evaluate true TARC value via (C.24). The results
are shown in Figure C.12, as illustrated by the green curve. A significant improvement
is observed for all port combinations. The best solution offers Γt = 0.241, and its
realization is shown in Figure C.13c. Notice that TARC is not zeroed since the
antenna is lossy and the assumption of zero loss from the previous section is not
fulfilled. In a lossy case, the lowest TARC value is indicated by the fundamental
bound on radiation efficiency in Figure C.12.

As a final step, each solution to (C.39) was taken as an initial guess and entered
the local optimization (simplex method) of (C.29) with BL and R0 being two real
variables3. This final optimum is, for each port combination, shown as the black
curve in Figure C.12. Only mild improvement, as compared to the direct solution
to (C.39), is observed. This indicates that the majority of the solutions were already
very close to the minimum. This is confirmed by a parametric sweep of BL and R0

for the globally best combination, represented by a star mark on the black curve in
Figure C.12 and by its realization in Figure C.13d. The parameters, BL and R0,
were swept in a broad range around their optima and the optimal excitation with
corresponding TARC were evaluated by (C.29). The values are shown in Figure C.15,
where the solution to (C.39) and its further optimization via (C.29) lie close to each
other, cf., Figures C.13c and C.13d. It can be seen from Figure C.15 that TARC, for

3In general, the optimized function is not convex in these variables and care must be taken
to find globally optimal solution. In low-loss cases, the global optimum lies in the vicinity of
perfectly matched setup and a local optimization is justified.
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Figure C.15: TARC as a function of characteristic impedance R0 and tuning
susceptance BL. The realization with the lowest TARC, i.e., the one depicted
in Figure C.13d, is studied. The marks stand for the solution found by (C.38)
(circle mark, Γt = 0.2408) and for the solution found by (C.38) with subsequent
fine-tuning via simplex method [188] of (C.29) (cross mark, Γt = 0.2407).
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Figure C.16: The values of characteristic impedances and tuning elements re-
quired to reach TARC performance from Figure C.12, black curve. The realizations
are arranged in the same order as realizations for the “b = 0, simplex method”
curve in Figure C.12. A detail of the first 100 realizations with best performance
in TARC are on the right. The elements with negative susceptance are highlighted
by red cross marks, while those with positive susceptance are in green.

this particular setting (structure, frequency, material, port placement), is relatively
insensitive to variations in connected susceptance. Conversely, the precise realization
of characteristic impedance is crucial to secure low TARC.

Since the particular choice of parameters BL,p and R0,p is encumbered with
some external constraints (manufacturing, availability of the components, etc.), the
resulting optimal parameters of BL,p and R0,p for all combinations of ports are
shown in Figure C.16. Their ordering is the same as for the data set in Figure C.12
represented by the black curve, i.e., for the solution to (C.39) with subsequent local
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Figure C.17: Results of TARC Γt for several realizations from Figure C.15. The
matching and excitation scheme for the minimal value of TARC reached at the
frequency 676MHz (black dashed line) is depicted in Figure C.13d. The matching
and excitation schemes for cases A, B, and C are depicted in top row of the figure.
The case A was chosen because of its TARC value is almost the same as for the
optimal solution and the value of the resistance R0,p is approximately doubled. The
case B was chosen because of its extremely high value of resistance R0,p. Finally,
the case C was chosen because of the closeness of its resistance R0,p = 50.3Ω
to 50Ω. The level of half-power fractional bandwidth (HPFBW) is highlighted by
the horizontal dotted black line with the values shown in the inset of the figure.

optimization via (C.29). One can notice that positive susceptances (capacitors) are
available only for a few solutions on the left. The characteristic impedances rarely
overcome 20Ω for this particular structure.

Figures C.12 and C.16 suggest that there is a great variety of port placements
reaching almost the same TARC value. Particularly, the first 3000 solutions from
Figure C.12 differ in TARC value by less than 2.5%. Their corresponding matching
parameters shown in Figure C.16, however, differ considerably (ordering in both
figures is the same) and with them the TARC bandwidth, see Figure C.17, which
can be a parameter of the final choice.

To confirm the superb performance of the solution from Figure C.13d, the funda-
mental bound on radiation efficiency was calculated for this particular combination
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Figure C.18: Current density (absolute value) induced by the feeding scheme
from Figure C.13d, f = 676MHz.
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Figure C.19: Radiation pattern generated by a current from Figure C.18. The
highest directivity in the broadside direction is D = 2.37 dBi.

of ports. The value of the upper bound ηuprad = 0.942 is equal to the radiation
efficiency realized by the ports and circuitry from Figure C.13d, i.e., there is no
reflected power thanks to the solution to (C.39) and the radiation efficiency reaches
the fundamental bound. The current density and radiation pattern for the best
solution is depicted in Figure C.18 and Figure C.19, respectively. In other words,
there is no room for further improvement of the performance other than changing
the shape of the antenna or adding additional ports.

This example demonstrated that there is a simple and straightforward technique to
find an optimal placement of ports, their optimal excitation, and optimal parameters
of a matching circuit which, for a fixed antenna body, prescribed losses and frequency,
gives the lowest possible value of TARC.
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C.7 Realized Gain

Antenna directivity [164] is defined here as [61]

D (ê, r̂) =
4π

Z0

IHFHFI

IHRΩI
=

4π

Z0

vHfHfv

vHgΩv
, (C.40)

where F (ê, r̂) = F (ê, r̂) I is the electric far field in polarization ê and direction r̂, Z0

is the impedance of free space, and f = F (ê, r̂)YDC is port representation of far-
field, see [61, App. D] for details. Putting TARC Γt and antenna directivity D
together gives a realized gain (sometimes called absolute gain [164]):

Gt =
(
1−

(
Γt)2)D =

4π

Z0

vHfHfv

vHkH
i kiv

=
4π

Z0

|fv|2
|kiv|2

. (C.41)

The optimization problem for maximal realized gain reads

maximize vHfHfv

subject to vHkH
i kiv =

Z0

4π
,

(C.42)

and is solved by a generalized eigenvalue problem

fHfvi = γi
Z0

4π
kH
i kivi. (C.43)

Since the LHS of (C.43) contains a rank-1 operator, the dominant eigenvector is
known analytically as

v1 ∝
(
kH
i ki

)−1

fH (C.44)

and which, when substituted into the Rayleigh quotient of (C.43), gives a maximal
realized gain

Gt
up = γ1 =

4π

Z0

∣∣fk−1
i

∣∣2 . (C.45)

The maximal realized gain is a function of ports’ placement, tuning susceptances,
and characteristic impedances (through the matrix ki). For additional optimization
of ports’ placement, see SectionC.5 with η1 being changed to γ1 in (C.29). From
the computational point of view, the matrix inversion has to be iteratively solved in
(C.45) instead of the determination of the dominant eigenpair in (C.28) or (C.38).

C.7.1 Example: Optimal Excitation for Maximal Realized Gain

The four-element dipole antenna array operating at f = 1GHz was chosen as
a simple and instructive example. The thin-strip dipoles are of resonant length
(ℓ = λ/2), their width is ℓ/100, and they are made of copper (σCu = 5.96 ·107 Sm−1).
Each dipole has a delta gap feeding in its center.

Two arrangements are studied:

1. an uniform array with separation distance d = λ/2,

2. a non-uniform array, d = {λ/20, λ/10, λ/4}.
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Figure C.20: Results of the feeding synthesis (solution to the optimization
problem for angle φ) for various approaches of realized gain maximization. The
uniform array of four metallic dipoles, separated by distance d = λ/2 is considered.
The meaning of all curves is explained in details in SectionC.7.1. The blue line
stands for unit feeding, v = 1. The curve denoted as vopt (green solid) was
evaluated by (C.45). The black curves are individual solutions to (C.39) (thin
dashed) with their maximum envelope highlighted by the solid black line. The final
solution is represented by the solid red line, which was found by solving (C.39)
with subsequent simplex optimization of (C.45).

Dipoles are, in both cases, parallel to the z-axis, the delta gap feeders are placed in
a z = 0 plane, and both arrays are centered at the origin of the coordinate system.

The dominant polarization ê = ϑ̂ is investigated in the ϑ = π/2, φ = [0, π] half-cut,
i.e., from the end-fire direction (φ = 0, to +x direction), through the broad-side
direction (φ = 0, to +y direction), and ending with the end-fire direction (φ = π,
to −x direction).

The uniform array is treated first. The realized gain Gt is depicted in Fig-
ure C.20 for various excitation schemes. The first scheme uses unit amplitudes at
all ports which is favorable in the broad-side direction, but performs poorly for
other directions [164]. When the excitation is found by (C.45) (tuning circuitry
fixed at R0 = 50Ω and BL = 0S) for each direction φ, performance is improved for
all studied directions except for the broad-side direction, where the unit excitation
is already optimal. Still, relatively poor performance is observed in the end-fire
direction, the reason being the fixed matching circuitry. The dependence on the
characteristic impedance R0 is shown in Figure C.21 for a broad-side direction where
it is seen that performance close to the optimum occurs in the relatively broad
range of R0, with the maximum being reached around R0 ≈ 64Ω (highlighted by
the vertical dashed line). Major improvements are thus expected from the reactive
matching via elements BL. This is accomplished by solving (C.39) with a subsequent
simplex optimization of (C.45).

The four solutions to (C.39) are depicted by black dashed lines with the maximum
envelope highlighted by the black solid line. All these solutions were subsequently
considered as the starting point for a simplex optimization method which tried to
locally maximize (C.45). Similarly as in the previous section, this technique is capable
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Figure C.21: Sensitivity of the realized gain Gt in the broad-side direction
(φ = π/2, ϑ = π/2) to the value of characteristic impedance R0. The meaning of
the curves is the same as in the Figure C.20. The inset shows the uniform array
studied in this example.

of delivering excellent results, represented here by the red solid line, which dominates
the performance in realized gain Gt for all investigated directions. The associated
optimal excitation of all four ports is shown in Figure C.22. Notice the in-phased
constant voltages for the broad-side direction and, conversely, the alternating polarity
of the voltages for the end-fire direction (i.e., vi ∼ exp {−jπi}, i ∈ {1, . . . , 4}). The
end-fire setup closely follows the phase progression opposite the electric distance
between the radiators (kd = π) as recommended by textbooks [164].

As anticipated from the array theory [189], the ability to radiate well to a given
direction changes with separation distance d between individual array elements. This
is the case of the second array considered, for which the elements are nonuniformly
spaced, separated by relatively short distance. The performance of such an array
is shown in Figure C.23 with the same meaning of all curves as in Figure C.20.
The highest realized gain Gt is reached in end-fire directions, preferably in the +x
direction. The best solution to (C.39) is, in this case, very close to the solution
refined by subsequent simplex optimization.

The two examples of thin-wire metallic arrays demonstrated effectiveness and
insight gain by the utilization of the port mode-based definition and optimization
of realized gain. Notice that the same analysis can be done for an arbitrarily large
array or multi-port antenna possibly made of inhomogeneous and lossy materials.
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Figure C.22: The optimal excitation of the uniform metallic dipole array with
separation distance d = λ/2. Different colors represent real (solid) and imaginary
(dashed) parts of the voltage vi impressed at the i-th port. Optimal excitation with
optimal circuit parameters R0 and BL (not shown) was found for each direction φ
via the solution to (C.39) and the subsequent simplex optimization of (C.45).
Their realization led to the optimal performance indicated by the red curve in
Figure C.20.
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Figure C.23: Results of the feeding synthesis (solution to the optimization prob-
lem for angle φ) for various approaches of realized gain minimization. The nonuni-
form array of four metallic dipoles, separated by distance d = {λ/20, λ/10, λ/4} is
considered. The meaning of all curves is the same as in Figure C.20.
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C.8 Conclusion

The total active reflection coefficient (TARC) and realized gain were reformulated in
terms of source current density and terminal voltages. This enabled the evaluation
of these antenna metrics in full-wave fashion, taking into account ohmic losses of
realistic metals and the particular shape(s) of radiator(s). There are no restrictions
on homogeneity of materials. Since both figure of merits are defined in terms of
quadratic forms, the presented formulation allows not only for the easy evaluation
of TARC and realized gain, but also for the determination of optimal voltages,
optimal placement of the ports, or determination of optimal terminal impedances
and optimal matching.

Within this formulation, the full method of moments solution has to be evaluated
only once and, while the admittance matrix is obtained, only computationally cheap
indexation has to be performed to sweep the position of the ports. All resulting
eigenvalue problems contain only small matrices and, in the case of realized gain,
the optimal excitation for its maximization was even found analytically, being a sole
function of ports’ placement and characteristic and matching impedances.

The fast evaluation and subsequent optimization makes it possible to solve the
combinatorial feeding synthesis problem for all practically reasonable configurations
of ports with an exhaustive search. As a side-product, the optimal excitation and
optimal circuitry is delivered. The designer then has full access to all possible
solutions, their performance, and a list of all circuit elements needed. When
performance is not sufficient, the only resolution required is a change of supporting
geometry or the addition of extra ports.

The method was demonstrated on a simple dipole, a multi-port MIMO antenna,
and uniform and nonuniform arrays. The presented results confirm the usefulness
of the method for multi-port antenna systems with the advantage of having the
possibility of including/excluding ohmic losses from the evaluation of TARC to make
the results comparable with practical measurements.

Further research is needed to study other multi-port metrics as a cross-correlation
coefficient or the ability to excite multiple states simultaneously and to define and
optimize these quantities in the same way as shown in this paper. An interesting
extension would be to combine this work with a selective excitation of orthogonal
radiation patterns and to determine conditions for optimal performance. Establishing
a connection to characteristic port modes can reveal a link between their selective
excitation and optimality in TARC and realized gain. Another research direction is
optimality within the frequency band. Finally, since both this work and the topology
sensitivity approach [190] shares the admittance matrix as the only variable needed
to perform either feeding of topology synthesis, the possibilities of how to merge
these two treatments of important antenna problems will be studied as an ultimate
goal of antenna synthesis.

C.A Fundamental Bound on Radiation Efficiency

The fundamental bound on radiation efficiency (C.25) is expressed here in terms of
the port modes associated with a controllable [107] subregion ΩC ⊆ Ω, represented
by a particular indexing matrix C.

The procedure starts with the introduction of the dissipation factor δrad [191]

ηrad =
1

1 + δrad
, (C.46)
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which has a favorable scaling δrad ∈ [0,∞], for details see [192]. In order to accom-
modate the requirement on a controllable subregion ΩC, the procedure from [61] is
applied to a port mode representation of the radiated and lost power, (C.17) and
(C.18), as

minimize vHgρv

subject to vHgΩv = 1,
(C.47)

which is readily solved by an eigenvalue problem

gρvi = δigΩvi. (C.48)

The unknowns v in (C.47) and (C.48) are the expansion coefficients of the ports
modes (C.30) associated with a controllable region ΩC, i.e., the matrix C, defined in
(C.10), has non-zero entries only for indices p belonging to the edges that coincide
with ports. Taking the smallest eigenvalue of (C.48)

δlbrad = min
i

{δi} (C.49)

and substituting it back into (C.46) yields the upper bound on radiation effi-
ciency ηubrad for a given subregion ΩC. The eigenvector of (C.48) corresponding to
the smallest eigenvalue represents the optimal feeding.

As compared to the current density-based bounds, see, e.g., [61, 192], which are
typically not reachable since full control of current is required, the bound (C.49)
is realizable by impressing the corresponding voltage vi to selected ports. This
implies that (C.49) is always sub-optimal with respect to the current-based bounds.
Realistic antenna designs with a fixed placement of ports, such as those proposed
in [193], should rather be compared with (C.49) than with fundamental current
density-based bounds [61].
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Abstract—A problem of the erroneous duality gap caused by the presence of
symmetries is solved in this paper utilizing point group theory. The optimization
problems are first divided into two classes based on their predisposition to suffer
from this deficiency. Then, the classical problem of Q-factor minimization is
shown in an example where the erroneous duality gap is eliminated by combining
solutions from orthogonal sub-spaces. Validity of this treatment is demonstrated
in a series of subsequent examples of increasing complexity spanning the wide
variety of optimization problems, namely minimum Q-factor, maximum antenna
gain, minimum total active reflection coefficient, or maximum radiation efficiency
with self-resonant constraint. They involve problems with algebraic and geometric
multiplicities of the eigenmodes, and are completed by an example introducing the
selective modification of modal currents falling into one of the symmetry-conformal
sub-spaces. The entire treatment is accompanied with a discussion of finite
numerical precision, and mesh grid imperfections and their influence on the results.
Finally, the robust and unified algorithm is proposed and discussed, including
advanced topics such as the uniqueness of the optimal solutions, dependence on the
number of constraints, or an interpretation of the qualitative difference between the
two classes of the optimization problems.

Index terms: Antenna theory, electromagnetic modeling, method of moments,
eigenvalues and eigenfunctions, optimization.

D.1 Introduction

Fundamental bounds expressed in terms of source quantities [158, 194] have shown
their versatility and usefulness for a wide range of applications in antenna theory,
microwaves, and optics. They delimit the performance of theoretically feasible
structures which help to judge the performance of existent designs [195] and, in
a few cases, lead to the conclusion that existing designs have already reached the
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bounds [89]. Additionally, given that the bounds are far from the actual performance
of the devices became the driving force to search for better designs [196]. However,
despite recent success and a straightforward implementation, the problem with the
presence of geometry symmetries remained open [62, 107, 158].

Under certain conditions, discussed in detail in this paper, a large class of
optimization problems experience difficulties when symmetries are present. Although
the problem is of a technical nature, it has a serious impact on the validity of the
results since the degeneracy of eigenvalues introduces a duality gap, i.e., the difference
between dual and primal solutions [106]. This duality gap is manifested by the fact
that the current solution for a primal was not constructed correctly. The known
empirical solutions to this issue utilize an ad hoc combination of the degenerated
eigenvectors [62, 107]. This approach is difficult to apply inside a general solver
dealing with a large class of problems and structures of arbitrary geometry. The
main difficulty, however, arises with structures of higher-order geometry degeneracies
where the choice of modes to be combined is non-trivial. Since the shapes exhibiting
symmetries are often used as initial designs, and since it is expected that the field
of fundamental bounds will expand into a plethora of yet unsolved problems and
researchers may face the problem again, a comprehensive and general treatment of
this issue is of considerable importance.

The proposed solution adheres to point group theory, namely, the von Neumann-
Wigner theorem [20] is applied to a spectrum of eigenvalue traces given by the
stationary points of the optimization problem. Consequently, the conditions under
which the problem arises are discussed including how the problem is always connected
to an underlying (parameterized) eigenvalue problem introducing an erroneous
duality gap. A simple procedure showing how to detect when the problem occurs
and how to close the erroneous duality gap is given. The proposed recipe can
also treat cases of realistic mesh grids, i.e., those not perfectly respecting the
symmetry groups of the original object. The procedure was thoroughly tested on
many canonical objects, such as a rectangular plate, square plate, metallic rim with
ground plane, in-parallel placed and crossed dipoles, spherical shell, etc.

The paper is organized as follows. The situation is thoroughly analyzed in
Section D.2. It is realized that the erroneous duality gap occurs only when the
eigenvalue solution is required, i.e., for quadratically constrained quadratic programs
(QCQPs) without linear terms. When the linear terms are present, this ambiguity
vanishes as the solution does not use eigenvalue decomposition. The illustrative
example of the erroneous duality gap is introduced in SectionD.3 and in SectionD.4
with the help of point group theory. In SectionD.5, some examples are explicitly
treated, showing where and how the symmetries appeared and what is their influence
on the problem. The properties of the method are discussed in SectionD.6. The
uniqueness of the results (current density, port voltages, etc.) is investigated in
light of the knowledge gained from the symmetry treatment. It is shown, that
the presence of symmetries may introduce additional degrees of freedom for the
optimization and it is specified where it is so. The paper is concluded in SectionD.7.

D.2 QCQP Problems
The evaluation of the source quantity-based fundamental bounds starts with a
statement of the optimization problem. Two problems, denoted as P1 and P2, are
shown below to distinguish when the problem with symmetries may (P1) or may
not (P2) arise. After establishing the Lagrangians, the optimization problems are
solved via dual formulation [106] the solution to which are subsequently interpreted
with respect to point group theory.
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Figure D.1: Various source quantities x to be optimized. (a) Port voltage, x = V,
of two in-parallel placed dipoles. The arrangement embodies a Cs symmetry group,
see Section D.A and [30]. (b) Current density, x = I, on a rectangular plate
belonging to a C2v group, see SectionD.A and [30]. (c) Current density, x = α on
a spherical shell expanded in spherical harmonics. The spherical shell belongs to
the O(3) symmetry group [30].

D.2.1 Optimization Problem P1

Let us start with QCQP problem P1 containing only quadratic terms

minimize xHAx

subject to xHBx = 1

xHCx = 0,

(D.1)

where x is the optimized quantity, e.g., current density or port voltages in the source
region, see Figure D.1, andA,B, andC, are integro-differential operators represented
in a basis defined by either piece-wise or entire-domain basis functions {ψn}, [37].
It is assumed that the algebraic properties of the operators are compatible with
the problem to be solved, e.g., B ≻ 0 and C being generally indefinite (the true
physical meaning of these operators is given later on).

The Lagrangian of the problem P1 is

L1 (λi,x) = xHH (λi)x+ λ1 (D.2)

with its derivative
∂L1 (λi,x)

∂xH
= H (λi)x, (D.3)

where H (λi) = ∂2L1/∂x
H∂x = A− λ1B− λ2C is the Hessian matrix [188]. The

stationary points x̃ are solutions to

∂L1 (λi,x)

∂xH
= 0, (D.4)

or explicitly to
Ax̃− λ2Cx̃ = λ1Bx̃. (D.5)
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D.2.2 Optimization Problem P2

For the sake of completeness, the second optimization problem P2 is defined as

minimize xHAx

subject to xHBx = 1

xHCx = Re
{
xHc

}
,

(D.6)

i.e., the second constraint contains a linear term in x with c being known column
vector. Analogous to (D.2), the Lagrangian reads

L2 (λi,x) = xHH (λi)x+ λ2Re
{
xHc

}
+ λ1 (D.7)

The derivative of the Lagrangian is

L2 (λi,x)

∂xH
= H (λi)x+

λ1

2
c. (D.8)

The stationary points x̃ are

x̃ = −λ1

2
H−1 (λi) c, (D.9)

with the demand that H (λi) ≻ 0.

D.2.3 Solution to Dual Problems

Primal problems P1 and P2 with stationary points (D.5) and (D.9) are generally
non-convex and are often approached using dual function [106] defined as

dp (λi) = inf
x̃

{Lp (λi, x̃)} , (D.10)

where p = {1, 2}. The supremum of the dual function

d∗p = sup
λi

{dp (λi)} , (D.11)

is a lower bound to the primal optimization problem [106], the solution to which is
here denoted as p∗. Since the dual function is convex [106], the solution to (D.11)
can easily be found. Algebraic techniques reducing the computational burden behind
the optimization of this type of problem are presented in [59].

Generally, the duality gap g∗ ≥ 0,

g∗ = p∗ − d∗ (D.12)

exists, nevertheless, problems involving the minimum Q-factor [107], maximum
antenna gain [62], maximum radiation efficiency [99, 108], minimum total active
reflection coefficient (TARC) [109], and their mutual trade-offs [192], were shown to
have no duality gap. Hence, to simplify the exposition, and without loss of generality,
it is assumed for the rest of the paper that there is no duality gap g∗, i.e., p∗ = d∗

for both problems P1 and P2.
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The typical workflow solving problem P1 consists of an iterative evaluation of
the generalized eigenvalue problem (D.5), taking the dominant eigenvalue λ1 and
setting the multiplier λ2 so that λ1 is maximized. On the contrary, the treatment of
problem P2 requires a repetitive solution to the system of linear equations. This is
an important distinction between problems P1 and P2: issues with symmetries may
occur in problem P1 while they cannot appear for problems of type P2.

D.3 Illustrative Example: Problem of P1-Type

Let us demonstrate the effect of symmetries on a practical example of Q-factor
minimization with a constraint on the self-resonance of the current, specifically

minimize IHWI

subject to IHR0I =
1

2

IHX0I = 0,

(D.13)

where W = A = ω∂X0/∂ω, R0 = B, and X0 = C from (D.1), i.e., the problem
of the minimum Q-factor falls into a class of P1 problems, and Z0 = R0 + jX0 is
the impedance matrix for a scatterer made of a perfect electric conductor (PEC),
see [59] for the exact definition of all the matrix operators. The basis functions used
are Rao-Wilton-Glisson (RWG) functions [51] and the optimization variable x = I
represents the surface current density as

J (r) ≈
∑
n

Inψn (r) . (D.14)

All the operators were evaluated in the Antenna Toolbox for MATLAB (AToM)
package [29].

This problem has a long history starting with a seminal work of Chu [92] and has
fully been described and solved in [107]. The solution to the dual problem (D.11)
reads

d∗ = max
λ2

min
m

λ1,m (D.15)

with the eigenvalues λ1,m defined by

1

2
(W − λ2X0) Im = λ1,mR0Im, (D.16)

cf., (D.5).
The definition of the Q-factor [197] can be rewritten as [107]

Q (I) =
max

{
IHXmI, IHXeI

}
IHR0I

, (D.17)

where

Xm =
1

2
(W +X0) , (D.18a)

Xe =
1

2
(W −X0) . (D.18b)
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(a) (b) (c)

Figure D.2: Shapes and their discretization utilized to solve the optimization
problem (D.13). (a) L-shape plate of dimensions ℓ×ℓ/2 with cutoff of size ℓ/2×ℓ/4
discretized via Delaunay triangulation with a pixelized pattern consisting of 216 tri-
angles and 306 basis functions. (b) The rectangular plate of dimensions ℓ× ℓ/2
with a mesh grid respecting the symmetries of the object consisting of 288 trian-
gles and 414 basis functions. (c) Same as (b) with a non-symmetrical mesh grid
intentionally made an-isotropic, consisting of 274 triangles and 378 basis functions.
The electrical size is, in all cases, ka = 1/2, where k is the wave-number and a is
the radius of the smallest sphere circumscribing the structure. All structures are
made of PEC and the numerical quadrature of the third order [198] in AToM [29]
is utilized to gather the matrix operators.

The formula (D.17) is valid for arbitrary current I and can be used as a useful check
of the duality gap g = Q(λ∗

2)− d∗, where Q(λ∗
2) is a Q-factor evaluated via (D.17)

with current I1 (m = 1) found by (D.16) at λ2 = λ∗
2. When no duality gap occurs,

we have
Q∗ = Q (Iopt) = d∗. (D.19)

A solution to (D.15) is found here for two different shapes: an L-shape plate and
a rectangular plate with a perfectly symmetric mesh grid, see Figure D.2b. The
effects of the non-regular mesh grid, depicted in Figure D.2c are studied as well.
The dual function and its maximum d∗ at λ∗

2 is shown in Figure D.3 with subfigures
(a)–(c) corresponding to those of Figure D.2. Due to the large numerical dynamics
in the bottom panes, the vicinity of the dual solutions are zoomed in the top panes
of Figure D.3 with the traces for the actual value of Q-factor (D.17) added.

The non-symmetrical case (a) causes no problems and Q∗ = d∗ for λ∗
2, i.e.,

there is no duality gap. On the other hand, case (b) seemingly embodies a duality
gap g = Q (λ∗

2)−d∗. This “erroneous” duality gap is caused by the eigenvalue crossing
(two eigensolutions to (D.16) are degenerate at λ∗

2). Neither of the degenerated
eigenmodes satisfy the last constraint of (D.13), which is manifested by the immediate
increase in the value of corresponding Q-factor Q (Im). It is shown later on that
the degenerate solutions to (D.16) must properly be combined to satisfy this last
constraint (to secure the self-resonance of the optimal current) and to close the gap.
The last case (c) has no duality gap thanks to the slightly non-symmetrical mesh
grid.
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Figure D.3: Eigenvalues (Lagrange’s multipliers) λ1 from (D.16) as functions of
Lagrange’s multiplier λ2 (bottom panes) and the corresponding Q-factors (D.17)
(top panes, the green solid curves). The top panes show details in the vicinity of
the optimal value of the multiplicator λ∗2. The two lowest eigenvalues λ1,m are
depicted. For case (b), the lowest eigenvalue from B2 (the blue line), A2 (the red
line), and B1 (the orange line) irreducible representations [30] are shown (to be
discussed in the next section). The structures depicted in Figure D.2 are employed
with the physical setting described in the caption of Figure D.2.

This introductory example raises a series of questions:

1. When can problems with symmetries be expected?

2. How can the problem be detected?

3. How can the erroneous duality gap g caused by the presence of symmetries be
fixed?

4. How can the robustness of the treatment for a numerical evaluation be im-
proved?

These questions are addressed in the following text after a brief review of the elements
of point group theory.
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D.4 Presence of Symmetries

Point group theory1 constitutes the framework, both for the theoretical understand-
ing and practical treatment of the issues related to symmetries.

Let us assume an object Ω invariant to a set of point symmetries (e.g., ro-
tation, reflection, etc.). Imagine further that object Ω is discretized and basis
functions {ψn (r)} are applied. It can be shown [30] that any operator, say A, repre-
sented in a basis {ψn (r)} and preserving the symmetries, can be block-diagonalized
as

Â = ΓTAΓ =

A1 · · · 0
...

. . .
...

0 · · · AG

 , (D.20)

where matrix Γ is called a symmetry-adapted basis [30] and its construction for
piece-wise basis functions is shown, e.g., in [161]. Each block Ag in (D.20) belongs to
a unique irreducible representation of the point group [30], briefly denoted hereinafter
as “irreps”, see SectionD.A for some notable examples relevant to this work.

An important consequence of relation (D.20) is that the eigenvalue decomposition
of operator A on a symmetrical structure is also separable into irreps, i.e., each
eigenvector belongs to a particular irrep and eigenvectors from different irreps
are orthogonal to each each other even with respect to any operator. A central

observation pertaining to the spectrum of the operator Â, attributed to von Neumann
and Wigner [20], then states that if operator A is dependent on a certain parameter,
such as frequency or Lagrange’s multiplier, see (D.16), the traces of eigenvalues
(abbreviated in this paper as “eigentraces”) belonging to the same irreps cannot
cross each other [114, 161]. Applying this theorem to Figure D.3b, the blue and
red traces must belong to modes from different irreps, as only traces of modes from
different irreps can cross2. Applying this theorem to Figure D.3a, no problems with
degeneracies occur, since no symmetries are present, i.e., all modes belong to only
one irrep, see Table D.3 of SectionD.A. In this case, therefore, there should be no
crossing of eigentraces.

D.5 Various Aspects of the Symmetry Presence

Several problems of various complexity are solved and interpreted in this section in
terms of point group theory. The necessity of combining two modes from different
irreps to remove the erroneous duality gap is shown in SectionD.5.1. When geometry
multiplicities appear, more than one solution exists and modes can freely be combined
as shown in Section D.5.2. The study of how an imperfect mesh grid affects the
symmetry treatment is conducted in SectionD.5.3. Since the mesh grid is often made
from rectangular or triangular elements, not all objects are perfectly represented, e.g.,
a spherical shell with triangular discretization elements [52]. The subsequent example
in SectionD.5.4 shows that the theory introduced in this paper is generally valid
for the arbitrary representation of the unknown (source) quantities, cf., Figure D.1,
by employing port-mode representation [159] to minimize the TARC [109, 157]

1Only the crucial parts essential for this work are reviewed here. The reader is referred to,
e.g., [30] and references therein for a comprehensive explanation.

2Modes from different irreps have no physical interaction which is the reason for allowed
crossing of their traces.
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of the metallic rim. The spectrum of the spherical shell is evaluated analytically
and compared with the numerical solution in SectionD.5.5. The last example in
SectionD.5.6 deals with an academic, yet highly relevant, technique manipulating
the eigenvalue traces of the isolated irrep.

D.5.1 Algebraic Multiplicity of Eigenvalues (Rectangular Plate)

The erroneous duality gap shown in Section D.3 for a rectangular plate, see Fig-
ure D.2b and the results in Figure D.3b, is eliminated here by the proper combination
of degenerate eigenvectors.

The optimization problem (D.13) is solved with (D.16) by separately utiliz-
ing (D.20) for irreps B2 and A2, i.e., two traces with a crossing at λ∗

2 = 0.662 in
Figure D.3b. At the crossing point, the corresponding eigenvectors can be linearly
combined without a change of dual function value g∗ = λ1 (λ

∗
2). Taking dominant

modes from irreps as Ia ∈ B2, Ib ∈ A2, see Figure D.4, we get

Iopt = Ia + αIb. (D.21)

The erroneous duality gap in Figure D.3b, top pane, is a manifestation of the
constraint’s violation in (D.13). Therefore, constant α is found to fulfill

IHoptX0Iopt = 0. (D.22)

Since modes Ia and Ib belong to different irreps, we have IHaX0Ib = 0, and

α =

√
−IHaX0Ia
IHb X0Ib

ejφ (D.23)

with φ ∈ [0, 2π) and the assumption that the square root is real. Except of
nonphysical cases when the underlying mesh grid does not support inductive modes,
this is always the case as for capacitive/inductive current Ia we have to choose
inductive/capacitive current Ib so that the reactive powers have opposite sign.
Combining the degenerated modes with (D.21), (D.23), we get the optimal current,
see Figure D.4c, fulfilling all constraints and d∗ = Q∗.

Notice that the mixing coefficient α has the same form as in [160], where two
dominant characteristic modes (capacitive and inductive) were combined to get a
minimum Q-factor.

D.5.2 Geometry Multiplicity of Eigenvalues (Square Plate)

This example attempts to highlight the difference between a degeneracy across irreps
(the previous section) and the higher dimension of a single irrep, a situation where
the symmetries introduce additional degrees of freedom (this section).

Let us consider a setting depicted in Figure D.5 which shows a square plate made
of a perfectly conducting material, discretized with a symmetric mesh grid, and
centered with respect to the coordinate system. Antenna gain G in a direction r̂
and polarization ê for a self-resonant current is to be maximized as

minimize − IHU (ê, r̂) I

subject to IH (R0 +Rρ) I = 1

IHX0I = 0,

(D.24)
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I1 ∈ B2

IH1 X0I1
IH1 R0I1

= −38.71

Q (I1) = 44.57

(a)

I2 ∈ A2

IH2 X0I2
IH2 R0I2

= 202.7

Q (I2) = 206.4

(b)

Iopt = I1 + αI2
IHoptX0Iopt

IHoptR0Iopt
= 0

Q (Iopt) = 38.02

(c)

Figure D.4: Current densities associated with the first two modes of the eigenvalue
problem (D.16) evaluated for the rectangular shape depicted in Figure D.2b
at λ2 = λ∗2, cf. Figure D.3b. The right subfigure shows the correct combination
to eliminate the erroneous duality gap depicted in the top pane of Figure D.3b.
Subfigure (a) shows a capacitive mode belonging to irrep B2 (the blue line in
Figure D.3b) with Q-factor Q (I1) = 44.57. Subfigure (b) shows an inductive mode
belonging to irrep A2 (the red line in Figure D.3b) with Q-factor Q (I1) = 206.4.
Finally, subfigure (c) shows the combination of currents from subfigures (a) and (b)
with the mixing coefficient α = 4.232. The resulting current Iopt is self-resonant
and Q (Iopt) = Q∗ = d∗.

where U is a radiation intensity matrix with low-rank representation [61]

U (ê, r̂) = FH (ê, r̂)F (ê, r̂) , (D.25)

where F (ê, r̂) =
[
FT

ϑ̂
(r̂) FT

φ̂ (r̂)
]T

and Rρ is a material matrix defined in [61]. The
optimization problem (D.24) is solved according to the procedure from SectionD.2.1
by combining constraints as proposed in [62]. The solution reads

G∗ = d∗ = −4πmax
ν

min
m

λ1,m, (D.26)

where
−UIm = λ1,m (R0 +Rρ − νX0) Im (D.27)

with ν = −λ2/λ1,m ∈ [νmin, νmax] being picked so that the matrix on the right-hand
side of (D.27) is positive definite [62]. A further acceleration of the formula (D.27)
is possible, see [62] for details.

The optimization problem (D.24) differs from (D.13) in two respects. First,
matrix U has rank 2, which means that only two eigenvalues from (D.27) differ
from zero. Second, matrix U explicitly depends on the the observation coordinate,
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x

y

z

F (ê, r̂)

ϕ

ϑ

Figure D.5: Optimization setting and coordinate system used for the optimization
of maximal antenna gain with a self-resonant constraint. Symbol F (ê, r̂) denotes
an electric far field in r̂ direction and of polarization ê.

which also must be taken into account when considering the symmetries of the
problem. Notice that for a general observation coordinate r̂, the physical problem is
not symmetric although the antenna geometry is.

For the purpose of this example, let us assume that the direction for radiation
intensity maximization has been set to r̂ = ẑ and that the electrical size is ka = 1/2.
The material parameters were set to be equivalent to copper at frequency f = 1GHz.
No restrictions were imposed on polarization ê meaning that the solution can equally

be formed by polarization pointing into ϑ̂ and φ̂ directions (or their combination).
With these settings and the mesh grid from Figure D.5, the optimization problem
complies with symmetries of the C4v point group, see Table D.6 in SectionD.A.

The solution to (D.27) is depicted in Figure D.6 with an immediate observation
of twice degenerated eigentraces. These traces belong to irrep E (the only two-
dimensional irrep of point group C4v). Since there is no other eigentrace crossing
these two at ν∗ (all other eigenvalues are zero), there is no need to combine modes
to fulfill the third constraint as in SectionD.5.1. Instead, both solutions are valid
on their own. They are geometry multiplicities, because for r̂ = ẑ the two rank-one
matrices Fϑ̂ and Fφ̂ forming operator U are linearly dependent

Fφ̂ = Fϑ̂C4, (D.28)

where C4 ∈ RN×N is the (unitary) rotation matrix by angle φ = π/2 around ẑ
axis, CH

4 C4 = 1, represented in basis {ψn (r)}, therefore,

F =

[
Fϑ̂

Fϑ̂C4

]
(D.29)

yields twice degenerated eigenvalue λ1 in (D.27) since according to (D.25)

FHF = FH
ϑ̂Fϑ̂ +CH

4 F
H
ϑ̂Fϑ̂C4. (D.30)

105



APPENDIX D. A ROLE OF SYMMETRIES IN EVALUATION OF
FUNDAMENTAL BOUNDS

0 0.5 1 1.5 2 2.5 3

·10−4

−0.063

−0.064

−0.065

−0.066

−0.067

−0.068

ν∗ = 4.729 · 10−5

ν

λ
1

λ1, Fϑ

λ1, Fϕ

Figure D.6: Solution to the dual problem (D.27) for a rectangular plate of
electrical size ka = 1/2 made of lossy material equivalent to copper at 1GHz.
The observation direction is r̂ = ẑ. The inset shows the mesh grid utilized for
the optimization. The optimum value of Lagrange’s multiplier ν∗ = 4.729 · 10−5

is highlighted by the dashed black line. The two depicted eigentraces belong to
irrep E, see Table D.6 in SectionD.A, and are twice degenerated for all values of ν.

Adapting the knowledge gained in this section on an example of minimal Q-factor
optimization from the previous section with a shape from, e.g., the C4v point group
(a square plate), a problem originates where two modes out of three degeneracies have
to be combined as (D.21) to fulfil the third constraint (D.22). In such a case, these
two modes have to be from different irreps, specifically Ia ∈ IA, Ib ∈ IB , A ≠ B so
that

sign
{
IHaX0Ia

}
= −sign

{
IHb X0Ib

}
, (D.31)

otherwise the erroneous duality gap cannot be eliminated.

D.5.3 Imperfections of the Mesh Grid

The understanding gained in the previous sections will be exploited here on an
example of mesh grid imperfectness, where the point group rules are obscured by
fact that all computations are made with finite numerical precision.

Two structures of different point groups are assumed, a square plate (C4v) and a
rectangular plate (C2v). The optimization of the Q-factor introduced in SectionD.4
and solved in SectionD.5.1 is considered. The discretization grids are made of square
pixels, see the insets on the left of Figure D.7, or compressed both horizontally and
vertically, see the insets on the right of Figure D.7. Assuming that the mesh grid
lies in the x− y plane with the bottom-left corner at the origin, the compression is
provided via transformation[

x

Lx
,
y

Ly

]
→
[(

x

Lx

)ξ

,

(
y

Ly

)ξ
]
, (D.32)

applied on every grid node, where Lx, Ly are side lengths of the square or rectangle
and ξ ∈ (1,∞).
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Figure D.7: Study of an erroneous duality gap expressed in terms of Q
(
λ∗2

)
for

an optimization of self-resonant Q-factor. Two symmetric objects are considered, a
square plate (C4v point group, top pane) and a rectangular plate (C2v points group,
bottom pane). The parameter ξ distorts the mesh grid both in horizontal and in
vertical directions, see the insets. The point group theory with separation into
irreps applies for the negligible distortions, see left parts of the panes, highlighted
by the gray background. For significant distortions, the structures behave as non-
symmetric and no duality gap appears, see the right parts of the panes, highlighted
by the green color. The most problematic part is the transition between symmetric
and non-symmetric cases, see the intermediate parts of the panes, highlighted by
the red color. The dashed black lines corresponds to subfigures (b) and (c) in
Figure D.8.

The smooth distortion of the symmetric mesh grid enables an evolution of an
erroneous duality gap to be seen, depicted as a normalized quantity in Figure D.7.
For ξ = 1, the mesh grids preserve the symmetry of the object and an erroneous
duality gap exists, see the left part of Figure D.7 highlighted by the gray background
color. The error given by the difference between the primal and dual solution
attains 34% for the square plate and about 17% for the rectangular plate, respectively.
For a reasonable large value of ξ, say ξ > 1 + 10−2, the non-symmetry of the
grid is significant enough that no special treatment is required (duality gap is
zero), see the right part of Figure D.7, highlighted by the green background color.
The most challenging cases lie between these two regions, highlighted by the red
background color in Figure D.7, and often occur in practice due to rounding errors
and other numerical imperfections. This region deserves further attention because
the symmetry treatments from the previous sections have to be properly adapted.

The dual solution to the example of the square plate and Q-factor minimization,
depicted in Figure D.7, top pane, is repeated in Figure D.8. The close vicinity
around λ∗

2 point is studied for ξ =
{
1, 1 + 10−5, 1 + 10−2

}
, i.e., for three various

representatives of different regions in Figure D.7. It is seen that crossings of
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Figure D.8: Investigation of the close vicinity of the eigenvalue crossing/crossing
avoidances for three particular cases from Figure D.7, top pane (the square plate).
From left to right, they are evaluated for (a) ξ = 1 (symmetric mesh grid),
(b) ξ = 1+ 10−1 (slightly non-symmetrical mesh grid), and (c) ξ = 1+ 10−2 (non-
symmetric mesh grid). Due to the enormous sensitivity of the numerical precision,
the high-order quadrature rule was applied to evaluate the matrix operators.

eigentraces for the symmetric case evolves into the crossing avoidance scenario
initially described in [20] (English transcription) and recalled in [114]. A problematic
case appears in Figure D.8b where the values of λ1 for λ∗

2 are very close to each
other, in this particular case they are the same up to six significant digits, yet not
separated into irreps. The assumption IHaCIb = 0 secured by (D.20) is, therefore,
not valid anymore and one has to solve (D.22) via (D.21) using

|α|2 + 2
Re
{
αIHaX0Ib

}
IHb X0Ib

+
IHaX0Ia
IHb X0Ib

= 0. (D.33)

Formula (D.33) is a generalization of (D.23) for slightly non-symmetrical struc-
tures or for perturbed non-symmetrical mesh grids of symmetric structures. The
only difference is the selection of suitable modes Ia and Ib to be combined. This
fact is discussed further on the algorithmic level in the next section. Notice that
the scenario shown in Figure D.8c contains one eigentrace (the blue curve) which is
significantly separated from the others to represent the true solution to the problem
on its own.

The study in this section suggests that one may avoid issues related to the
symmetries when non-symmetrical mesh grids are utilized, therefore, the symmetries
within the operators are broken. However, as revealed by Figure D.7, the threshold
over which the mesh can be considered non-symmetrical enough to disable the
erroneous duality gap is not sharp and cannot be used for general treatment of this
problem.

108



D.5. VARIOUS ASPECTS OF THE SYMMETRY PRESENCE

x

y

z

P1

P2

P3

P4

Figure D.9: A metallic rim with parasitic ground plane with four discrete ports,
denoted P1, . . . , P4. Both the rim and the ground plane are made of copper. The
ports are placed at the distance ℓ/5 from the ends of the longer side.

D.5.4 Change of Basis (TARC of a Lossy Metallic Rim)

It is shown in this example that the presence of symmetries strongly affects the
physics even when the basis (D.14) is changed, i.e., the operators are represented in
another basis, which is still compatible with the point group of the studied object.
A prominent example of this behaviour is a port modes representation [159], which
advantageously reduces the size of the problem. Another advantage is that since
the unknowns are the terminal voltages, cf., Figure D.1b, the optimal solution is
directly realizable.

A metallic rim placed over parasitic ground plane is shown in Figure D.9. The
size of the ground plane is 150mm× 75mm, the height of the rim is 2.5mm and the
height over the ground plane is 2.5mm (the dimensions are adjusted to be equivalent
to a smart phone chassis). The material of the chassis is copper. The discretiza-
tion grid was generated to accommodate the C2v point group. The total active
reflection coefficient (TARC), [157], as defined for port mode quantities in [109] is
to be optimized. The degrees of freedom are the terminal voltages, the character-
istic impedance of the transmission line R0,i and the matching susceptances BL,i,
see [109] for the detailed optimization procedure.

The position of the ports is specified in Figure D.9, with the polarization of the
delta gaps pointing towards +ŷ direction. Port admittance matrix y is of 4× 4 size
and complies with the symmetries of the C2v point group. The port voltages and
admittances

(
R−1

0,i − jBL,i

)
enforcing simultaneously zero reflections on all ports are

obtained as solutions to an eigenvalue problem [109]

yvi =
(
R−1

0,i − jBL,i

)
vi (D.34)

and are depicted in Table D.1 one by one as belonging to different irreps. When
properly normalized, they evoke the character table for the C2v point group, see
Table D.5 in SectionD.A. If port P1 is taken as the initial port, port P3 is identified
as its rotation by π, port P2 as reflection through xz plane, and port P4 as reflection
through yz plane. Knowing this, the voltage solutions can be assigned to the irreps
they represent.

The initial values of matching BL and loading R0 given by (D.34) can further
be optimized as described in [109]. TARC values Γt for all excitation schemes are
summarized in the last column of Table D.1, concluding that the feeding scheme v3,

109



APPENDIX D. A ROLE OF SYMMETRIES IN EVALUATION OF
FUNDAMENTAL BOUNDS

Table D.1: Summary of TARC optimization for rectangular metallic rim with a
parasitic ground plane for symmetry placement of four ports.

P1 P2 P3 P4 irrep 1/BL R0 Γt

v1 +1 +1 +1 +1 A1 451.3 24800 0.3064
v2 +1 −1 +1 −1 A2 −313.8 156700 0.4212
v3 +1 +1 −1 −1 B1 28.64 98.52 0.2374
v4 +1 −1 −1 +1 B2 21.23 149.7 0.3302

i.e., with the voltage orientation along the loop formed by the rim, gives the
minimum TARC. This excitation scheme belongs to the B1 irrep and dominates
up to frequency f ≈ 750MHz. Around that frequency the best performing irrep
switches to another one.

One notable implication of the symmetries is that the voltage schemes from Ta-
ble D.5 are identical in amplitude which simplifies the feeding circuitry, see [186] for
a detailed study.

The conclusions drawn in this section, i.e., that the effects of the symmetries
remain the same with a proper change of basis, apply for many practical applications.
For example, the entire domain basis of characteristic modes [49] suffers from the ne-
cessity of eigentrace tracking [114, 161]. On the other hand, proper use of symmetries
introduces additional degrees of freedom, e.g., for MIMO antenna design [86, 199].
Another notable example involves reduction with the Schur complement [107].

D.5.5 Analytically Solvable Problem (A Spherical Shell)

The next optimization problem is solved analytically. A minimal dissipation fac-
tor δ [99] is found with the optimal current being self-resonant [196]. A spherical
shell of radius a and electrical size ka is considered. Explicitly, the optimization
problem reads [192, 196]

minimize Plost

subject to Prad = 1

Preact = 0,

(D.35)

where the value of lost power Plost, radiated power Prad, and reactive
power Preact = 2ω (Wm −We) is given by quadratic forms as before. The opti-
mal dissipation factor is evaluated as δ = Plost/Prad [99].

Let us start with a proper representation of the operators, here, in an entire
domain basis of regular spherical waves up (kr) [200]

J (r) =
∑
p

αpup (kr) . (D.36)

The operators are given element-wise as

R0,pq = ⟨up,R0(uq)⟩ = Z0k

∫
Ω

∫
Ω′

Upq
sin (kR)

4πR
dV dV ′, (D.37)

with

Upq = u∗
p (kr) · uq

(
kr′
)
− 1

k2
∇ · u∗

p (kr)∇′ · uq

(
kr′
)
, (D.38)
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Figure D.10: Eigenvalue (Lagrange’s multipliers) λ1 from (D.41) as functions
of Lagrange’s multiplier λ2. The transverse magnetic (TM) modes are presented
by the red eigentraces (since the characteristic number is negative, λq < 0, the
curves are increasing). The transverse electric (TE) modes are represented by
the blue eigentraces (since λr > 0). Both curves are three times degenerated (in
correspondence with the geometrical multiplicity of dominant TM and TE modes).

R0 = [R0,pq], and similarly for X0 and Rρ, see [61], where up (kr) is a regular
spherical wave with the multi-index

p = 2
(
l2 + l − 1 + (−1)sm

)
+ τ, (D.39)

where l = {0, 1, . . . , L} denotes the order of spherical harmon-
ics, m = {−l, . . . , l}, s = {0, 1} denotes the parity and τ = {1, 2} denotes
the used radial profile, consult [53, 200] for details, Z0 is impedance of a vacuum, k
is wavenumber, and R = |r − r′|. Importantly, the choice of spherical waves for
spherical object leads to diagonal matrices Rρ, R0, and X0. Consequently, the
eigenvalue problem (D.5) for the problem (D.35) reads

(Rρ − λ2X0)α = λ1R0α (D.40)

which can further be separated into individual equations for each spherical wave

Rρp

R0p
− λ2

X0p

R0p
= δp − λ2λp = λ1p, (D.41)

where δp is the dissipation factor [191], and λp is a characteristic number3, both
being evaluated for dominant spherical waves in [201]. Since the dissipation fac-
tors δp are positive and characteristic numbers λp are indefinite, (D.41) generates
straight lines increasing (decreasing) with multiplicator λ2 for capacitive, λp < 0
(inductive, λp > 0) modes, see Figure D.10.

To solve the dual problem (D.11), two modes, say the qth and the rth spherical
waves, have to be chosen so that their traces intersect with the lowest value of λ1.

3Spherical harmonics are the characteristic modes of a spherical shell [52].

111



APPENDIX D. A ROLE OF SYMMETRIES IN EVALUATION OF
FUNDAMENTAL BOUNDS

This task is accomplished by taking the dominant TM and TE modes, q ∈ {2, 4, 6}
and r ∈ {1, 3, 5}, respectively, with

λ∗
2 =

δr − δq
λr − λq

. (D.42)

Substituting (D.42) into (D.41) for p = q or p = r yields λ∗
1 = δ∗, see Figure D.10.

The solution (D.42), however, does not secure the fulfilment of the self-resonant
constraint. This constraint is met by utilizing the linear combination of modes (six
modes are degenerated at λ2 = λ∗

2)

J (r) =
∑
q

αquq (r) + α
∑
r

αrur (r) = Je + αJm, (D.43)

where [201]

α =

√
− ⟨Je,X0(Je)⟩
⟨Jm,X0(Jm)⟩e

jφ, (D.44)

cf., (D.23). Both dominant TM and TE spherical waves are three-times geometrically
degenerated. Therefore, the αq and αr parameters are free to choose.

D.5.6 Manipulation With Isolated Eigentraces (Non-Foster Match-
ing Elements)

Recapitulate first that, when symmetries are present, the eigentrace crossings appear
and it might be required to combine two (or more) eigenvectors. Dealing with
higher-dimensional point groups, more possibilities exist thanks to the geometry
degeneracies. The question of whether it is possible to manipulate eigenvalue traces
so that more than two traces cross each other and form an additional degree of
freedom to constitute an optimal solution is answered in this example. This question
goes back to the very first example of Q-factor optimization from SectionD.3 and
SectionD.5.1.

Let us consider a hypothetical scenario of a passive structure tuned by frequency
independent reactances (causing no increase in stored energy). The structure is a
PEC rectangular rim of dimensions ℓ× ℓ/2, see the inset of Figure D.11b, and of
electrical size ka = 1. Without tuning reactances, the solution to the minimal Q-
factor is approached via (D.16), the eigenvalues of which are shown in Figure D.11a.
Let us select the first mode of B1 irrep, depicted by the orange curve in Figure D.11a,
and let us find reactance tuning such that this orange trace crosses the other two as
depicted in Figure D.11b. Notice that the traces λ1,1(λ2), λ1,2(λ2) were untouched.
In order to manipulate only with traces of irrep B1, the reactance matrix of the rim
is modified (by the inclusion of frequency independent tuning reactances) as

X̃0 = X0 + ΓB1X̂LΓ
T
B1
, (D.45)

where

X̂L =

XL,1 · · · 0
...

. . .
...

0 · · · XL,N

 (D.46)
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Figure D.11: Solution to the eigenvalue problem (D.16) for a rectangular rim of
electrical size ka = 1, see the inset. (a) The solution to the original problem (D.16).

(b) The solution to the modified problem (D.47) with reactance matrix X̃0 defined
so as to manipulate B1 irrep only. The irreducible representations of the modes
are specified in the legend.

is a matrix of tuning coefficients. Notice that matrices ΓB1 of the symmetry adapted
basis belonging to irrep B1 were used in the opposite direction than in relation (D.20).

This composition guarantees that, irrespective of the matrix X̂L, only properties

of X̃0 attached to irrep B1 will be modified.
The use of reactance matrix (D.45) in (D.16) instead of matrix X0 generates the

eigenvalue problem
1

2

(
W − λ2X̃0

)
Im = λ1,mR0Im, (D.47)

the results of which are shown in Figure D.12 for the optimal Lagrange’s multi-
plier λ2 = λ∗

2 ≈ 0.6577 and for a single non-zero parameter XL,i = XL. Notice that
particular index i of a selected tuning parameter is free to choose and is a function
of basis functions ordering.

Orthogonal properties of symmetry adapted bases belonging to different ir-
reps (D.20) can further be employed to simplify and speed up the evaluation of Fig-
ure D.12. It has already been mentioned that (D.45) cannot change eigentraces
belonging to irreps different than B1. The blue and red traces in Figure D.12 are
therefore independent of the tuning parameter and there is no need to recalculate
them (they attain the same value as in Figure D.11). To that point, relation (D.47)

is left multiplied by ΓT
B1

and Im = ΓB1 Îm is substituted which leads to

1

2

(
ŴB1 − λ∗

2X̂0,B1 − λ∗
2X̂L

)
ÎB1 = λ1,mR̂0,B1 ÎB1 . (D.48)

Eigenvalue problem (D.48) generates only those eigensolutions that belong to irrep B1

(orange eigentrace in Figure D.12).
It is seen in Figure D.11b that three eigentraces are crossing each other at λ∗

2.
That means that at least two solutions compliant with (D.21) are possible. These
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Figure D.12: Dependence of the dominant eigenvalues λ1,1, λ1,2, and λ1,3, from
irreps B2, A2, and B1, respectively, cf., Figure D.11, on the tuning parameter XL,i.

The matrix X̂L from (D.46) is full of zeros, except of the 16-th position, i = 16,
on the diagonal.

B2 + A2

(a)

B1 + A2

(b)

B2 + B1

(c)

Figure D.13: Three combinations (D.21) of modes generated by (D.47). Due to
the additionally introduced degeneracy in Figure D.11, not one, but three solutions
are possible. The two new solutions are depicted in subfigures (b) and (c).

solutions are depicted in Figure D.13 in terms of the resulting surface currents.
Case (a) is the classical solution known for C2v combining B2 and A2 irreps, cf.,
Figure D.4c. Case (b) in Figure D.13 is similar to case (a) in shape, but the maximum
current density appears on the shorter side. This is possible thanks to added reactive
matching elements which effectively elongate the side. Seen in this context, cases
(a) and (b) are close to two geometrically degenerated solutions, normally appearing
on the square rim (C4v point group). Finally, combining solely B irreps results in
case (c).

In order to reduce the Q-factor in the third irrep, an existence of frequency inde-
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pendent reactance with no energy accumulation was assumed, which is unphysical.
A physically more acceptable possibility would be to manipulate the first two modes
(from irrep A2,B2) so they become equal to the third mode. This will increase
the Q-factor value, but the gained benefit may be the equality of three eigenvalues
(more degrees of freedom). Another possibility is a selective manipulation with a
specific sub-set of characteristic modes. The same attempt was already undertaken
with geometry manipulations, preserving the symmetries [79], with selective exci-
tation [136], or with reactive tuning [138]). With the technique introduced above,
one characteristic mode from each irrep can be modified so they all have the same
eigenvalue at arbitrary ka. This is possible with simple reactive matching and the
procedure above offers a simple recipe of how to do it.

D.6 Discussion

The determination of fundamental bounds in the presence of symmetries raised
several interesting points to be discussed in this section.

D.6.1 Robust Algorithm To Eliminate Erroneous Duality Gaps

The procedure capable of dealing with all possible scenarios related to the presence
of symmetries is depicted in Figure D.14. Its robustness was tested against various
examples, involving both crossing (mesh grid preserving the symmetries) and near
crossing avoidance (slightly unsymmetrical mesh grids), and including shapes from
all point groups depicted in Table D.2.

The workflow is as follows. It is assumed that the problems belonging to class P1

are solved with a dedicated solver (the steps 1 and 2 in Figure D.14). While the
optimal multiplicator λ∗

2 is found (step 3), identify multiplicity |M| of eigenvalue λ1

(step 4), consider that they may vary up to relative error ϵ thanks to numerical errors
and mesh imperfections. According to |M| decide whether the eigenmodes have
to be combined (step 5). Notice that the decision shall not be based on constraint
fulfilment as a true duality gap might exist. When degeneracies do not appear, follow
standard procedure (steps 6 and 7), i.e., determine the value of primal problem p∗

(or verify that constraints are fulfilled). When the necessity of mode combination is
detected, a special routine replacing step 6 is called for (steps 6A–6D). First evaluate
projections for a matrix generating one of the constraints (step 6A, matrix CI).
Identify block-diagonal matrices within CI and assign them with different irreps
(step 6B). Pick one mode from two different irreps, if not possible, pick two modes
arbitrarily (step 6C) and find a value of parameter α (step 6D).

When geometric multiplicities described in SectionD.5.2 are present, it happens
that more modes appear in sets IA and IB . In such a case, the currents Ia and Ib
can be formed by arbitrary linear combination of modes from corresponding sets.
This gives an additional degree of freedom in forming optimal currents Iopt, reaching
the same value of the optimized metric, but exhibiting different properties with
respect to metrics not involved in the optimization. As an example, geometric
multiplicities in the optimization problem (D.13) can be used to generate optimal
currents of the same Q-factor, but different radiation diagrams.
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optim. problem P
from P1 class

find a solution to
(D.1) via (D.5)

set λ1,1 = min {λ1,m},
save λ∗

2

find a set M = {m}:
λ1,m < (1 + ǫ)λ1,1

is |M| > 1?

set d∗ = λ1,1

and Iopt = I1

evaluate primal
p∗ = p (Iopt)

solution to the prob-
lem P from P1 class

get CI = IHmCIm,
m ∈ M

identify irreducible
representations I in CI

pick two modes, if possi-
ble as Ia ∈ IA, Ib ∈ IB ,

such that A 6= B

set Iopt = Ia + αIb,
find α via (D.33)

1

2

3

4

5

6

7

8
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6B

6C

6D

no

yes

Figure D.14: Flowchart of a general algorithm dealing with degenerated eigen-
values. It is valid for an arbitrary optimization problem of type P1 (only quadratic
constraints) and can deal with the imperfections of the mesh grid, as described in
SectionD.5.3, cf. Figure D.7. In case of geometrical degeneracies within one irrep,
see SectionD.5.2, one particular solution is found.
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D.6.2 Distinction Between P1-type and P2-type Problems

We have seen that the presence of symmetries has serious consequences for the
correct evaluation of problems from class P1, defined by (D.1). Conversely, problems
from class P2, defined by (D.6), remain untouched. The reason is the presence of a
linear term in the constraints which is typically a consequence of a prescribed or,
in other words, uncontrollable field quantity. A good example is a prescription for
complex power balance, heavily utilized in [59],

IHZI = IHV, (D.49)

where V is a vector of excitation coefficients of the incident electric field intensity.
Analogous to (D.49) all the linear terms with a current as the unknown couple the
optimized quantity to the (external) field. This type of constraint makes the bounds
sharper since it connects the optimized quantities and their excitation together.

D.6.3 Uniqueness of the Optimal Solution

The explicit solution to problems P1 and P2 enlighten the uniqueness of the solutions.
In order to simplify the discussion, let us assume that matrices A and C in (D.1)
and (D.6) have full rank, all the matrices are fixed, and the optimized quantity is
properly representable in a basis (D.14), i.e., the basis is chosen so that it respects
the nature of the optimized problem.

The solution to problem P2 is unique. The solution to non-symmetric problem P1

is non-unique only with respect to the phase of the optimal current. For problem P1

with algebraic multiplicities, as shown in Section D.5.1, there is only one value
of mixing coefficient |α|, and only the phase of the mixed current may be chosen
arbitrarily. Finally, when geometrical multiplicities occur, as shown in SectionD.5.2,
the optimal current further contains an arbitrary linear combination of geometrically
degenerated eigenmodes, see Table D.2.

The uniqueness of the optimal currents Iopt generating fundamental bounds
implies that these bounds are not feasible except for the rare case in which the
region used for the optimization, Ω, is already an optimal solution to the shape
synthesis problem. Moreover, the excitation used has to be in accordance with the
optimal current found, i.e.,

V = ZIopt. (D.50)

If this is not the case, and once the initial shape Ω has to be perturbed to meet the
condition (D.50), see, e.g., [190], the removals of the degrees of freedom immediately
cause the deterioration of the fundamental bounds, which consequently indicates
that the original bound was not feasible.

D.6.4 More Than Two Constraints

The existence of a duality gap is not a function of symmetries. Furthermore, the
number of constraints and the number of degeneracies are not related in any way.
Irrespective of the number of constraints, and considering that there is no duality
gap g∗, the “erroneous” duality gap introduced by the presence of symmetries is
always eliminated by the proper choice of just one constant, α. This statement is
explained as follows.
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Table D.2: Maximum number of degenerated eigenvalues depending on the point
group of an object (no accidental crossing assumed). Symbols A and B represent
the dimensions of two irreps of the highest dimensions within the point group.
Only the dominant modes are considered.

point group C1 Cs, C2v C4v, C3 O(2) O(3)
max degen. λ1 1 + 0 1 + 1 2 + 1 2 + 1 3 + 3

Let us consider a problem from class P1 with multiple constraints leading to the
formula for the stationary points I in a form

AI− λ2CI− λ3DI+ · · · = λ1BI. (D.51)

The dual problem is solved by determining the set of optimal multipli-
ers {λ∗

1, λ
∗
2, λ

∗
3, . . . }, see step 3 in Figure D.14. When degeneracies are detected

(step 5 in Figure D.14), a combination of modes from different irreps has to be used
(steps 6A–6D in Figure D.14), introducing an additional degree of freedom, parame-
ter α. Notice that the values of the multipliers, {λ∗

1, λ
∗
2, λ

∗
3, . . . }, are not changed by

combining degenerated modal currents. Since we know from the beginning that the
problem has no duality gap, i.e., the solution to the primal problem is equal to the
solution of the dual problem, we know that all the constraints

IH1 BI1 + |α|2IH2 BI2 = 0

IH1 CI1 + |α|2IH2 CI2 = 1

IH1 DI1 + |α|2IH2 DI2 = d

... =
...

(D.52)

can be fulfilled by properly setting just one parameter α. This means that we
can pick only one of the constraints (D.52) and determine the proper value of the
parameter α.

The multi-objective optimization problems of fundamental bounds, see, e.g., [59,
62, 192, 202] are often formulated with additional constraints (D.52) representing
additional objectives. Such formulations therefore suffer from the erroneous duality
gap issues once they fit into the P1 class.

D.6.5 Reduction of Computational Complexity

A useful side-product of (D.20) is the possibility to compute eigenvalue decomposition
of each block (irrep) separately which leads to the acceleration of the optimization.
The ratio S between computation time of generalized eigenvalue decomposition
utilizing symmetries and computational time of a standard decomposition is obtained
by analyzing eigenvalue decomposition of (D.20).
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In order to present only the most salient features, it is assumed that that one
eigenvalue is to be found within each irrep. The potential speed-up in such case is

S ∝ 1

cNq

G∑
g=1

Nq
g , (D.53)

where G is the number of irreps, see (D.20), Ng = dim(Ag), q indicates asymptotic
complexity of used eigenvalue algorithm, and c indicates how many times the
algorithm has been used, e.g., q ≈ 2 and c = G for implicitly restarted Arnoldi
method [41], and q ≈ 3 and c = 1 for generalized Schur decomposition [40].

In order to provide a specific example, the C2v group used in this paper is
considered for evaluation of speed-up S. The dominant solution in each of the four
one-dimensional irreps is demanded, and the number of modes in each irrep is the
same, Ng = N/4. Relation (D.53) is simplified to

S ∝ 4

cNq

(
N

4

)q

=
1

42
=

1

16
(D.54)

both for implicitly restarted Arnoldi method and for generalized Schur decomposition.
An extreme case is shown in [56] for a body of revolution, where the system of

basis functions forms a reducible system so that inverse of the resulting matrix is
directly possible.

D.7 Conclusion

It has been shown that one entire class of optimization problems generating funda-
mental bounds in electromagnetism is encumbered with potential issues induced by
symmetries. When no linear constraints are present, care must be taken with the
investigation of the primal solution. This applies to structures with an imperfect
discretization mesh grid as well, where the elimination of an erroneous duality gap
might be even more problematic since the separation into irreducible representations
is not possible.

A heuristic, yet general and point group theory-based technique to remove the
erroneous duality gap has been presented and tested for various examples of varying
complexity. The formula was tested for all canonical bodies (rectangular and square
plates, a triangular shape, a spherical shell, etc.).

This work helps to understand the role of symmetries in establishing source
quantity-based bounds. The challenges related to the presence of symmetries, when
properly treated, introduce additional degrees of freedom. All conclusions apply
not only to optimal, yet abstract and usually non-realizable, currents but also to
optimal port mode excitation and other feasible representations of integro-differential
operators, both for their surface and volumetric formulations.

D.A Character Tables

This appendix lists character tables of point groups used in the paper. Each table
also contains symmetry operations available for the group (those are grouped into
conjugacy classes and enumerated in the first row of the table) and the corresponding
irreps (enumerated in the first column of the table). The table entries consist of group
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characters (numbers of the table) and denote the traces of the matrix representations
for a corresponding class and irrep. The number of irreps corresponds to the number
of classes [30], all rows and columns of the character table are orthogonal. The
symmetry operations used in Tables D.3–D.6 are: E: the identical operation, σt:
a reflection (t is a placeholder for a specific type of reflection), Cn(u): a rotation
by 2π/n around u axis, σuv a reflection through plane uv.

The character corresponding to identity operation E indicates the dimension of
the irrep and the geometric multiplicity of the eigenvalues within that irrep. For
example, current solutions falling into the E irrep of C4v group are twice degenerated,
see Table D.6. This applies to the solutions of the problem (D.27) in SectionD.5.2,
see Figure D.6.

Non-symmetric objects belong to point group C1, see Table D.3. Objects with
one reflection plane, often classified as having odd and even solutions, belong to
point group Cs, see Table D.4. The remaining two groups mentioned here are C2v

(e.g., rectangular plate) in Table D.5 and C4v (e.g., square plate) in Table D.6.
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Table D.3: Character table for point group C1, a non-symmetric object belonging
to.

C1 E

A +1

Table D.4: Character table for point group Cs, a non-symmetric object over
ground plane belonging to.

Cs E σh

A′ +1 +1
A′′ +1 −1

Table D.5: Character table for point group C2v, a rectangular plate belongs to.

C2v E C2(z) σxz σyz

A1 +1 +1 +1 +1
A2 +1 +1 −1 −1
B1 +1 −1 +1 −1
B2 +1 −1 −1 +1

Table D.6: Character table for point group C4v, a square plate belongs to.

C4v E 2C4(z) C2(z) 2σv 2σd

A1 +1 +1 +1 +1 +1
A2 +1 +1 +1 −1 −1
B1 +1 −1 +1 +1 −1
B2 +1 −1 +1 −1 +1
E +2 0 −2 0 0
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E Antenna Toolbox for MATLAB

The Antenna Toolbox for MATLAB (AToM) [29], as the
name reveals, is a tool for solving antenna and scattering
problems entirely written in MATLAB®. The development
team from universities in Prague and Brno began collabo-
rating under support by Technology Agency of the Czech
Republic in September 2014 and continues to expand the
toolbox with new functionalities. The graphical user inter-
face (GUI) is user-friendly and the semi-open architecture
allows users to access low-level functions. The fundamental
AToM idea behind its success is “Source concept”—a gener-
alized approach used to effectively evaluate and optimize antenna parameters using
only antenna geometry and source currents.

The toolbox allows users to design arbitrary geometries made of wires or arbitrarily
shaped highly conducting surfaces in the AToM DesignViewer, where also feeding
is set up. All dimensions and most model settings can be parametrized via AToM
Workspace. The discretization of the structure can be obtained by applying Delaunay
triangulation [203] with the possibility of locally customizing the density function or
to utilize symmetry planes. The session made in GUI is recorded in AToM History,
from where it can be exported to the executable script.

The core of AToM is based on the method of moments (MoM) and the solution
to the electric field integral equation [165]. In the newest version, the impedance
matrix evaluation and the solution to I = Z−1V can also be evaluated on the
graphics processing unit which reduces computational time significantly. Computed
current densities can be used to evaluate many antenna parameters, such as input
impedance, radiation pattern, Q-factor, stored energy, etc.; matrix operators needed
for the computation of these parameters are available. For a modal analysis of
arbitrary operators, AToM also contains a generalized eigenvalue problem solver
with an advanced adaptive tracking algorithm. The Results Browser allows the
visualization of computed quantities.

In addition to the main functionality on hand in GUI, AToM offers many advanced
functions accessible from the command window (e.g., functions related to the point
group theory). Moreover, several add-ons are available: functions for fundamental
bounds or topology optimization, a generator of strip mesh from the curve definition,
an add-on for export to TikZ, or a package with volumetric MoM, etc.

Table E.1 shows selected statistics about the AToM project. Figure E.1 maps
the spread of AToM around the World.
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Table E.1: Statistics of AToM valid up to December 1, 2021.

Files 2 511
Classes 216
Functions 4 326
Lines of code 207 982
– of which are comments 20 249

Add-ons 9
Free-version downloads 518
Full-version purchases 6

Figure E.1: Blue points represent locations (obtained from IP addresses) where
the free version of AToM was downloaded. Orange/yellow dots point to locations
where a full version of AToM was/is being purchased. Data updated on December
1, 2021.

E.1 Author’s Contribution to the AToM

“I joined the development team in October 2015. My primary responsibility was to
design and create a solver for a parametrized generalized eigenvalue problem. It is
mainly intended to compute characteristic modes with AToM’s MoM, but the decom-
position of arbitrary input matrices are supported as well. The tracking algorithm
contains several types of correlation computations or adaptive algorithms which
can insert additional frequency samples at places where the tracking fails. Results
from the modal solver were published and compared to commercial software [204]
and were benchmarked with in-house solutions used at other universities [205]. The
solution from the modal solver was used as the reference in this thesis.

Further, also for the purposes of this thesis, I implemented a set of functions
handling symmetries and point groups. It includes testing mesh invariance under a
given set of symmetry operations, constructing mapping matrices C (R), computing
matrix representations D (R), classification modes into irreducible representation,

and creating symmetry-adapted basis Γ(α,i).”

Visit http://antennatoolbox.com for more details.
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ISAbstract—The thesis focuses on the role of symmetries in computational
electromagnetics. The presence of point symmetries—geometric simi-
larities with respect to a fixed point—is studied within the realm of the
method of moments, revealing the simultaneous block-diagonalization
of matrix operators as the key instrument. The theory and an effective
procedure to acquire this so-called irreducible representation are de-
vised and implemented over a set of piece-wise basis functions. The
von Neumann-Wigner theorem and its interpretation of avoided cross-
ing are shown to be a remedy of problems associated with parametrized
modal analysis. This includes the identification of crossings/crossing
avoidances in modal tracking or an erroneous duality gap appearing in the
dual formulation of quadratic programs. The orthogonality between irre-
ducible representations is utilized to simultaneously excite independent
radiation states, a method that can find its use in multiple-input multiple-
output devices. Lastly, it is shown that the block-diagonal description of
symmetrical systems can lead to a remarkable increase in the speed of
computations.
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